These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 18793732)

  • 1. A bias for posterior alpha-band power suppression versus enhancement during shifting versus maintenance of spatial attention.
    Rihs TA; Michel CM; Thut G
    Neuroimage; 2009 Jan; 44(1):190-9. PubMed ID: 18793732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention.
    Kelly SP; Lalor EC; Reilly RB; Foxe JJ
    J Neurophysiol; 2006 Jun; 95(6):3844-51. PubMed ID: 16571739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From local inhibition to long-range integration: a functional dissociation of alpha-band synchronization across cortical scales in visuospatial attention.
    Doesburg SM; Green JJ; McDonald JJ; Ward LM
    Brain Res; 2009 Dec; 1303():97-110. PubMed ID: 19782056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of selective inhibition in visual spatial attention are indexed by alpha-band EEG synchronization.
    Rihs TA; Michel CM; Thut G
    Eur J Neurosci; 2007 Jan; 25(2):603-10. PubMed ID: 17284203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orienting and maintenance of spatial attention in audition and vision: an event-related brain potential study.
    Salmi J; Rinne T; Degerman A; Alho K
    Eur J Neurosci; 2007 Jun; 25(12):3725-33. PubMed ID: 17610592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The strength of anticipatory spatial biasing predicts target discrimination at attended locations: a high-density EEG study.
    Kelly SP; Gomez-Ramirez M; Foxe JJ
    Eur J Neurosci; 2009 Dec; 30(11):2224-34. PubMed ID: 19930401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of L-theanine on alpha-band oscillatory brain activity during a visuo-spatial attention task.
    Gomez-Ramirez M; Kelly SP; Montesi JL; Foxe JJ
    Brain Topogr; 2009 Jun; 22(1):44-51. PubMed ID: 18841456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dorsal posterior parietal rTMS affects voluntary orienting of visuospatial attention.
    Thut G; Nietzel A; Pascual-Leone A
    Cereb Cortex; 2005 May; 15(5):628-38. PubMed ID: 15342434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two electrophysiological stages of spatial orienting towards fearful faces: early temporo-parietal activation preceding gain control in extrastriate visual cortex.
    Pourtois G; Thut G; Grave de Peralta R; Michel C; Vuilleumier P
    Neuroimage; 2005 May; 26(1):149-63. PubMed ID: 15862215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The orienting of visuospatial attention: an event-related brain potential study.
    Talsma D; Slagter HA; Nieuwenhuis S; Hage J; Kok A
    Brain Res Cogn Brain Res; 2005 Sep; 25(1):117-29. PubMed ID: 15925498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of temporal predictability in the anticipatory biasing of sensory cortex during visuospatial shifts of attention.
    Green JJ; McDonald JJ
    Psychophysiology; 2010 Nov; 47(6):1057-65. PubMed ID: 20477979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Somatosensory anticipatory alpha activity increases to suppress distracting input.
    Haegens S; Luther L; Jensen O
    J Cogn Neurosci; 2012 Mar; 24(3):677-85. PubMed ID: 22066587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociated α-band modulations in the dorsal and ventral visual pathways in visuospatial attention and perception.
    Capilla A; Schoffelen JM; Paterson G; Thut G; Gross J
    Cereb Cortex; 2014 Feb; 24(2):550-61. PubMed ID: 23118197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre-target activity in visual cortex predicts behavioral performance on spatial and feature attention tasks.
    Giesbrecht B; Weissman DH; Woldorff MG; Mangun GR
    Brain Res; 2006 Mar; 1080(1):63-72. PubMed ID: 16412994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of allocation of visuo-spatial attention to visual stimuli triggering unilateral arm abduction on anticipatory postural control.
    Tomita H; Fujiwara K
    Clin Neurophysiol; 2008 Sep; 119(9):2086-97. PubMed ID: 18620907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial attention triggered by eye gaze enhances and speeds up visual processing in upper and lower visual fields beyond early striate visual processing.
    Schuller AM; Rossion B
    Clin Neurophysiol; 2005 Nov; 116(11):2565-76. PubMed ID: 16221564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemispheric modulations of alpha-band power reflect the rightward shift in attention induced by enhanced attentional load.
    Pérez A; Peers PV; Valdés-Sosa M; Galán L; García L; Martínez-Montes E
    Neuropsychologia; 2009 Jan; 47(1):41-9. PubMed ID: 18789956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid targeting followed by sustained deployment of visual spatial attention.
    Simpson GV; Dale CL; Luks TL; Miller WL; Ritter W; Foxe JJ
    Neuroreport; 2006 Oct; 17(15):1595-9. PubMed ID: 17001275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection.
    Thut G; Nietzel A; Brandt SA; Pascual-Leone A
    J Neurosci; 2006 Sep; 26(37):9494-502. PubMed ID: 16971533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visuospatial attention shifts by gaze and arrow cues: an ERP study.
    Hietanen JK; Leppänen JM; Nummenmaa L; Astikainen P
    Brain Res; 2008 Jun; 1215():123-36. PubMed ID: 18485332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.