These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 18793750)

  • 21. Role of backbone hydration and salt-bridge formation in stability of alpha-helix in solution.
    Ghosh T; Garde S; García AE
    Biophys J; 2003 Nov; 85(5):3187-93. PubMed ID: 14581218
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new i, i + 3 peptide stapling system for α-helix stabilization.
    Shim SY; Kim YW; Verdine GL
    Chem Biol Drug Des; 2013 Dec; 82(6):635-42. PubMed ID: 24267668
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of oxetane incorporation on the structure and stability of alpha-helical peptides.
    Jayawant ES; Beadle JD; Wilkening I; Raubo P; Shipman M; Notman R; Dixon AM
    Phys Chem Chem Phys; 2020 Nov; 22(43):25075-25083. PubMed ID: 33118559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transitions from alpha to pi helix observed in molecular dynamics simulations of synthetic peptides.
    Lee KH; Benson DR; Kuczera K
    Biochemistry; 2000 Nov; 39(45):13737-47. PubMed ID: 11076513
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrogen bonding in helical polypeptides from molecular dynamics simulations and amide hydrogen exchange analysis: alamethicin and melittin in methanol.
    Sessions RB; Gibbs N; Dempsey CE
    Biophys J; 1998 Jan; 74(1):138-52. PubMed ID: 9449318
    [TBL] [Abstract][Full Text] [Related]  

  • 26. X-ray Crystallographic Structure of α-Helical Peptide Stabilized by Hydrocarbon Stapling at
    Makura Y; Ueda A; Kato T; Iyoshi A; Higuchi M; Doi M; Tanaka M
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34069753
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures.
    Moriuchi T; Hirao T
    Acc Chem Res; 2010 Jul; 43(7):1040-51. PubMed ID: 20377253
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stabilization of alpha-helix structure by polar side-chain interactions: complex salt bridges, cation-pi interactions, and C-H em leader O H-bonds.
    Shi Z; Olson CA; Bell AJ; Kallenbach NR
    Biopolymers; 2001; 60(5):366-80. PubMed ID: 12115147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alpha-helical stabilization by side chain shielding of backbone hydrogen bonds.
    García AE; Sanbonmatsu KY
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2782-7. PubMed ID: 11867710
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chain conformation in polyretropeptides III: design of a 3(10) helix using alpha,alpha-dialkylated amino acids and retropeptide bonds.
    Alemán C
    Proteins; 1997 Dec; 29(4):575-82. PubMed ID: 9408953
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Helix packing motif common to the crystal structures of two undecapeptides containing dehydrophenylalanine residues: implications for the de novo design of helical bundle super secondary structural modules.
    Rudresh ; Gupta M; Ramakumar S; Chauhan VS
    Biopolymers; 2005; 80(5):617-27. PubMed ID: 16193455
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and characterization of water-soluble macrocyclic peptides stabilizing protein α-turn.
    Wang L; Coric P; Zhu K; Liu WQ; Vidal M; Bouaziz S; Broussy S
    Org Biomol Chem; 2018 Jan; 16(3):459-471. PubMed ID: 29265149
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gabapentin: a stereochemically constrained gamma amino acid residue in hybrid peptide design.
    Vasudev PG; Chatterjee S; Shamala N; Balaram P
    Acc Chem Res; 2009 Oct; 42(10):1628-39. PubMed ID: 19572698
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phage Selection of Chemically Stabilized α-Helical Peptide Ligands.
    Diderich P; Bertoldo D; Dessen P; Khan MM; Pizzitola I; Held W; Huelsken J; Heinis C
    ACS Chem Biol; 2016 May; 11(5):1422-7. PubMed ID: 26929989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Salt bridges do not stabilize polyproline II helices.
    Whittington SJ; Creamer TP
    Biochemistry; 2003 Dec; 42(49):14690-5. PubMed ID: 14661982
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of biologically relevant short alpha-helices stabilized by a main-chain hydrogen-bond surrogate.
    Wang D; Chen K; Kulp Iii JL; Arora PS
    J Am Chem Soc; 2006 Jul; 128(28):9248-56. PubMed ID: 16834399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and thermodynamic characterization of a bioactive peptide model of apolipoprotein E: side-chain lactam bridges to constrain the conformation.
    Luo P; Braddock DT; Subramanian RM; Meredith SC; Lynn DG
    Biochemistry; 1994 Oct; 33(41):12367-77. PubMed ID: 7918459
    [TBL] [Abstract][Full Text] [Related]  

  • 38. H-bonding cooperativity and energetics of alpha-helix formation of five 17-amino acid peptides.
    Wieczorek R; Dannenberg JJ
    J Am Chem Soc; 2003 Jul; 125(27):8124-9. PubMed ID: 12837081
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein Domain Mimics as Modulators of Protein-Protein Interactions.
    Sawyer N; Watkins AM; Arora PS
    Acc Chem Res; 2017 Jun; 50(6):1313-1322. PubMed ID: 28561588
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Non-classical Helices with cis Carbon-Carbon Double Bonds in the Backbone: Structural Features of α,γ-Hybrid Peptide Foldamers.
    Ganesh Kumar M; Thombare VJ; Katariya MM; Veeresh K; Raja KM; Gopi HN
    Angew Chem Int Ed Engl; 2016 Jun; 55(27):7847-51. PubMed ID: 27271202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.