These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 18793821)

  • 21. Long-term modelling of fly ash and radionuclide emissions as well as deposition fluxes due to the operation of large oil shale-fired power plants.
    Vaasma T; Kaasik M; Loosaar J; Kiisk M; Tkaczyk AH
    J Environ Radioact; 2017 Nov; 178-179():232-244. PubMed ID: 28910626
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feasibility study on solidification of municipal solid waste incinerator fly ash with circulating fluidized bed combustion coal fly ash.
    Liu W; Hou H; Zhang C; Zhang D
    Waste Manag Res; 2009 May; 27(3):258-66. PubMed ID: 19423575
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of energy recovery and CO2 reduction potential in Japan through integrated waste and utility management.
    Horio M; Shigeto S; Shiga M
    Waste Manag; 2009 Jul; 29(7):2195-202. PubMed ID: 19272763
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Can we afford to waste carbon dioxide? Carbon dioxide as a valuable source of carbon for the production of light olefins.
    Centi G; Iaquaniello G; Perathoner S
    ChemSusChem; 2011 Sep; 4(9):1265-73. PubMed ID: 21922678
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low-CO(2) electricity and hydrogen: a help or hindrance for electric and hydrogen vehicles?
    Wallington TJ; Grahn M; Anderson JE; Mueller SA; Williander MI; Lindgren K
    Environ Sci Technol; 2010 Apr; 44(7):2702-8. PubMed ID: 20187632
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Urine as a CO2 absorbent.
    Aguilar MJ
    J Hazard Mater; 2012 Apr; 213-214():502-4. PubMed ID: 22366316
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Globally sustainable manganese metal production and use.
    Hagelstein K
    J Environ Manage; 2009 Sep; 90(12):3736-40. PubMed ID: 19467569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advanced ash management technologies for CFBC ash.
    Anthony EJ; Berry EE; Blondin J; Bulewicz EM; Burwell S
    Waste Manag; 2003; 23(6):503-16. PubMed ID: 12909091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mineral and Heavy Metal Composition of Oil Shale Ash from Oxyfuel Combustion.
    Konist A; Neshumayev D; Baird ZS; Anthony EJ; Maasikmets M; Järvik O
    ACS Omega; 2020 Dec; 5(50):32498-32506. PubMed ID: 33376887
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Co-combustion of agricultural residues with coal in a fluidized bed combustor.
    Ghani WA; Alias AB; Savory RM; Cliffe KR
    Waste Manag; 2009 Feb; 29(2):767-73. PubMed ID: 18614348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Levels of benzo(a)pyrene in oil shale industry wastes, some bodies of water in the Estonian S.S.R. and in water organisms.
    Veldre IA; Itra AR; Paalme LP
    Environ Health Perspect; 1979 Jun; 30():211-6. PubMed ID: 571803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of nesquehonite by reaction of gaseous CO2 with Mg chloride solution: its potential role in the sequestration of carbon dioxide.
    Ferrini V; De Vito C; Mignardi S
    J Hazard Mater; 2009 Sep; 168(2-3):832-7. PubMed ID: 19303209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The clathrate hydrate process for post and pre-combustion capture of carbon dioxide.
    Linga P; Kumar R; Englezos P
    J Hazard Mater; 2007 Nov; 149(3):625-9. PubMed ID: 17689007
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mesoscale carbon sequestration site screening and CCS infrastructure analysis.
    Keating GN; Middleton RS; Stauffer PH; Viswanathan HS; Letellier BC; Pasqualini D; Pawar RJ; Wolfsberg AV
    Environ Sci Technol; 2011 Jan; 45(1):215-22. PubMed ID: 20698546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimating the carbon sequestration capacity of shale formations using methane production rates.
    Tao Z; Clarens A
    Environ Sci Technol; 2013 Oct; 47(19):11318-25. PubMed ID: 23988277
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An in situ FTIR step-scan photoacoustic investigation of kerogen and minerals in oil shale.
    Alstadt KN; Katti DR; Katti KS
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Apr; 89():105-13. PubMed ID: 22261101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CO2 mitigation potential of mineral carbonation with industrial alkalinity sources in the United States.
    Kirchofer A; Becker A; Brandt A; Wilcox J
    Environ Sci Technol; 2013 Jul; 47(13):7548-54. PubMed ID: 23738892
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-step accelerated mineral carbonation and decomposition analysis for the reduction of CO₂ emission in the eco-industrial parks.
    Jung S; Wang LP; Dodbiba G; Fujita T
    J Environ Sci (China); 2014 Jul; 26(7):1411-22. PubMed ID: 25079989
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long-term mineral transformation of Ca-rich oil shale ash waste.
    Leben K; Mõtlep R; Paaver P; Konist A; Pihu T; Paiste P; Heinmaa I; Nurk G; Anthony EJ; Kirsimäe K
    Sci Total Environ; 2019 Mar; 658():1404-1415. PubMed ID: 30678000
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Precipitation of heavy metals from wastewater using simulated flue gas: sequent additions of fly ash, lime and carbon dioxide.
    Chen Q; Luo Z; Hills C; Xue G; Tyrer M
    Water Res; 2009 Jun; 43(10):2605-14. PubMed ID: 19375144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.