BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 1879447)

  • 41. General principles and perspectives of cancer therapy with radiopharmaceuticals.
    Shapiro B; Fig LM
    J Nucl Med Allied Sci; 1990; 34(4):260-4. PubMed ID: 2090790
    [No Abstract]   [Full Text] [Related]  

  • 42. Which radionuclides will nuclear oncology need tomorrow?
    Barbet J; Chatal JF; Gauché F; Martino J
    Eur J Nucl Med Mol Imaging; 2006 Jun; 33(6):627-30. PubMed ID: 16741760
    [No Abstract]   [Full Text] [Related]  

  • 43. Specific targeting of cancer with monoclonal antibodies. Diagnostic and therapeutic applications.
    Abrams PG
    Front Radiat Ther Oncol; 1990; 24():182-5; discussion 202-3. PubMed ID: 2187757
    [No Abstract]   [Full Text] [Related]  

  • 44. Effect of tumour shrinkage on the biological effectiveness of permanent brachytherapy implants.
    Dale RG; Jones B; Coles IP
    Br J Radiol; 1994 Jul; 67(799):639-45. PubMed ID: 8061998
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Radiometabolic treatment of bone-metastasizing cancer: from 186rhenium to 223radium.
    Rubini G; Nicoletti A; Rubini D; Asabella AN
    Cancer Biother Radiopharm; 2014 Feb; 29(1):1-11. PubMed ID: 24180669
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [New radiopharmaceuticals for oncologic diagnosis and therapy: developments in radioimmunoscintigraphy and radioimmunotherapy].
    Eisenhut M; Brandau W; Reinel U; Kimmig B
    Rontgenblatter; 1989 Jan; 42(1):24-7. PubMed ID: 2645635
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Monoclonal antibodies: old and new trends in breast cancer imaging and therapeutic approach.
    Stipsanelli E; Valsamaki P
    Hell J Nucl Med; 2005; 8(2):103-8. PubMed ID: 16142251
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Update: improvement strategies for peptide receptor scintigraphy and radionuclide therapy.
    de Visser M; Verwijnen SM; de Jong M
    Cancer Biother Radiopharm; 2008 Apr; 23(2):137-57. PubMed ID: 18454684
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanotargeted radionuclides for cancer nuclear imaging and internal radiotherapy.
    Ting G; Chang CH; Wang HE; Lee TW
    J Biomed Biotechnol; 2010; 2010():. PubMed ID: 20811605
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Peptide receptor radionuclide therapy: an overview.
    Dash A; Chakraborty S; Pillai MR; Knapp FF
    Cancer Biother Radiopharm; 2015 Mar; 30(2):47-71. PubMed ID: 25710506
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Radionuclides, technologies and quality control in brachytherapy].
    Marchesi V; Gautier M; Villani N; Feuillade J; Dejean C
    Cancer Radiother; 2013 Apr; 17(2):85-8. PubMed ID: 23474213
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Late toxicity and biochemical recurrence after external-beam radiotherapy combined with permanent-source prostate brachytherapy: analysis of Radiation Therapy Oncology Group study 0019.
    Lee WR; Bae K; Lawton C; Gillin M; Morton G; Firat S; Baikadi M; Kuettel M; Greven K; Sandler H
    Cancer; 2007 Apr; 109(8):1506-12. PubMed ID: 17340591
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biochemical disease-free survival rates following definitive low-dose-rate prostate brachytherapy with dose escalation to biologic target volumes identified with SPECT/CT capromab pendetide.
    Ellis RJ; Zhou H; Kim EY; Fu P; Kaminsky DA; Sodee B; Colussi V; Vance WZ; Spirnak JP; Kim C; Resnick MI
    Brachytherapy; 2007; 6(1):16-25. PubMed ID: 17284381
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A comparison of the impact of isotope ((125)I vs. (103)Pd) on toxicity and biochemical outcome after interstitial brachytherapy and external beam radiation therapy for clinically localized prostate cancer.
    Kollmeier MA; Pei X; Algur E; Yamada Y; Cox BW; Cohen GN; Zaider M; Zelefsky MJ
    Brachytherapy; 2012; 11(4):271-6. PubMed ID: 22192495
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Separation of nuclear isomers for cancer therapeutic radionuclides based on nuclear decay after-effects.
    Bhardwaj R; van der Meer A; Das SK; de Bruin M; Gascon J; Wolterbeek HT; Denkova AG; Serra-Crespo P
    Sci Rep; 2017 Mar; 7():44242. PubMed ID: 28287131
    [No Abstract]   [Full Text] [Related]  

  • 56. Targeted therapy using alpha emitters.
    Vaidyanathan G; Zalutsky MR
    Phys Med Biol; 1996 Oct; 41(10):1915-31. PubMed ID: 8912371
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Radionuclides in radiation-induced bystander effect; may it share in radionuclide therapy?
    Widel M
    Neoplasma; 2017; 64(5):641-654. PubMed ID: 28592116
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Salvage prostate brachytherapy for localized prostate cancer failure after external beam radiation therapy.
    Lee HK; Adams MT; Motta J
    Brachytherapy; 2008; 7(1):17-21. PubMed ID: 18201939
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Therapeutic radionuclides: production and decay property considerations.
    Volkert WA; Goeckeler WF; Ehrhardt GJ; Ketring AR
    J Nucl Med; 1991 Jan; 32(1):174-85. PubMed ID: 1988628
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Technological advances in radioimmunotherapy.
    Dearling JL; Pedley RB
    Clin Oncol (R Coll Radiol); 2007 Aug; 19(6):457-69. PubMed ID: 17537620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.