BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 18794755)

  • 1. Preoperative planning simulator for spinal deformity surgeries.
    Aubin CE; Labelle H; Chevrefils C; Desroches G; Clin J; Eng AB
    Spine (Phila Pa 1976); 2008 Sep; 33(20):2143-52. PubMed ID: 18794755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical modeling of anterior spine instrumentation in AIS.
    Desroches G; Aubin CE; Rivard CH
    Stud Health Technol Inform; 2006; 123():415-8. PubMed ID: 17108461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward the next generation of simulator for intraoperative navigation of scoliotic spine surgeries.
    Cartiaux O; Aubin CÉ; Labelle H; Cheriet F
    Stud Health Technol Inform; 2012; 176():322-5. PubMed ID: 22744520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of alternative instrumentation strategies in adolescent idiopathic scoliosis: a biomechanical analysis.
    Robitaille M; Aubin CE; Labelle H
    J Orthop Res; 2009 Jan; 27(1):104-13. PubMed ID: 18634064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical assessment of variable instrumentation strategies in adolescent idiopathic scoliosis: preliminary analysis of 3 patients and 6 scenarios.
    Robitaille M; Aubin CE; Labelle H
    Stud Health Technol Inform; 2006; 123():309-14. PubMed ID: 17108444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Biomechanical modeling of instrumentation for the scoliotic spine using flexible elements: a feasibility study].
    Poulin F; Aubin CE; Stokes IA; Gardner-Morse M; Labelle H
    Ann Chir; 1998; 52(8):761-7. PubMed ID: 9846426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical simulations of scoliotic spine correction due to prone position and anaesthesia prior to surgical instrumentation.
    Duke K; Aubin CE; Dansereau J; Labelle H
    Clin Biomech (Bristol, Avon); 2005 Nov; 20(9):923-31. PubMed ID: 16061317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relation between patient positioning, trunk flexibility and surgical correction of the scoliotic spine.
    Petit Y; Aubin CE; Labelle H
    Stud Health Technol Inform; 2002; 88():400-3. PubMed ID: 15456070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical simulation of Colorado instrumentation of the scoliotic spine: a preliminary study.
    Verniest F; Petit Y; Chopin D; Godillon-Maquinghen AP; Cheriet F; Drazetic P; Aubin CE
    Stud Health Technol Inform; 2002; 88():415-8. PubMed ID: 15456074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel mathematical model of the sagittal spine: application to pedicle subtraction osteotomy for correction of fixed sagittal deformity.
    Yang BP; Chen LA; Ondra SL
    Spine J; 2008; 8(2):359-66. PubMed ID: 17697800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of correction objectives on the optimal scoliosis instrumentation strategy: a preliminary study.
    Majdouline Y; Aubin CE; Labelle H
    Stud Health Technol Inform; 2008; 140():116-20. PubMed ID: 18810011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A study of biomechanical coupling between spine and rib cage in the treatment by orthosis of scoliosis].
    Aubin CE; Dansereau J; De Guise JA; Labelle H
    Ann Chir; 1996; 50(8):641-50. PubMed ID: 9035438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic positioning of scoliotic patients during spine instrumentation surgery.
    Duke K; Aubin CE; Dansereau J; Koller A; Labelle H
    J Spinal Disord Tech; 2009 May; 22(3):190-6. PubMed ID: 19412021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulations of rib cage surgery for the management of scoliotic deformities.
    Gréalou L; Aubin CE; Sevastik JA; Labelle H
    Stud Health Technol Inform; 2002; 88():345-9. PubMed ID: 15456059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scoliosis correction objectives in adolescent idiopathic scoliosis.
    Majdouline Y; Aubin CE; Robitaille M; Sarwark JF; Labelle H
    J Pediatr Orthop; 2007; 27(7):775-81. PubMed ID: 17878784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical modelling of a direct vertebral translation instrumentation system: preliminary results.
    Wang X; Aubin CE; Labelle H; Crandall D
    Stud Health Technol Inform; 2008; 140():128-32. PubMed ID: 18810013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending.
    Little JP; Adam CJ
    Spine (Phila Pa 1976); 2009 Jan; 34(2):E76-82. PubMed ID: 19139657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical modeling and analysis of a direct incremental segmental translation system for the instrumentation of scoliotic deformities.
    Wang X; Aubin CE; Crandall D; Labelle H
    Clin Biomech (Bristol, Avon); 2011 Jul; 26(6):548-55. PubMed ID: 21334124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraoperative tracking of the trunk during posterior instrumentation of the scoliotic spine: a feasibility study.
    Mac-Thiong JM; Labelle H; Vandal S; Aubin CE
    Stud Health Technol Inform; 2002; 88():410-4. PubMed ID: 15456073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between 4.0-mm stainless steel and 4.75-mm titanium alloy single-rod spinal instrumentation for anterior thoracoscopic scoliosis surgery.
    Yoon SH; Ugrinow VL; Upasani VV; Pawelek JB; Newton PO
    Spine (Phila Pa 1976); 2008 Sep; 33(20):2173-8. PubMed ID: 18794758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.