These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 18794860)

  • 21. The transcription termination factor Rho is essential and autoregulated in Caulobacter crescentus.
    Italiani VC; Marques MV
    J Bacteriol; 2005 Jun; 187(12):4290-4. PubMed ID: 15937192
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SucA-dependent uptake of sucrose across the outer membrane of Caulobacter crescentus.
    Modrak SK; Melin ME; Bowers LM
    J Microbiol; 2018 Sep; 56(9):648-655. PubMed ID: 30054816
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Caulobacter requires a dedicated mechanism to initiate chromosome segregation.
    Toro E; Hong SH; McAdams HH; Shapiro L
    Proc Natl Acad Sci U S A; 2008 Oct; 105(40):15435-40. PubMed ID: 18824683
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Secretion of the Caulobacter crescentus S-layer protein: further localization of the C-terminal secretion signal and its use for secretion of recombinant proteins.
    Bingle WH; Nomellini JF; Smit J
    J Bacteriol; 2000 Jun; 182(11):3298-301. PubMed ID: 10809716
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Location and architecture of the Caulobacter crescentus chemoreceptor array.
    Briegel A; Ding HJ; Li Z; Werner J; Gitai Z; Dias DP; Jensen RB; Jensen GJ
    Mol Microbiol; 2008 Jul; 69(1):30-41. PubMed ID: 18363791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Caulobacter crescentus Homolog of DnaA (HdaA) Also Regulates the Proteolysis of the Replication Initiator Protein DnaA.
    Wargachuk R; Marczynski GT
    J Bacteriol; 2015 Nov; 197(22):3521-32. PubMed ID: 26324449
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatial organization and dynamics of RNase E and ribosomes in
    Bayas CA; Wang J; Lee MK; Schrader JM; Shapiro L; Moerner WE
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):E3712-E3721. PubMed ID: 29610352
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Association of the Cold Shock DEAD-Box RNA Helicase RhlE to the RNA Degradosome in Caulobacter crescentus.
    Aguirre AA; Vicente AM; Hardwick SW; Alvelos DM; Mazzon RR; Luisi BF; Marques MV
    J Bacteriol; 2017 Jul; 199(13):. PubMed ID: 28396352
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein localization during the Caulobacter crescentus cell cycle.
    Wheeler RT; Gober JW; Shapiro L
    Curr Opin Microbiol; 1998 Dec; 1(6):636-42. PubMed ID: 10066543
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization.
    Holden SJ; Pengo T; Meibom KL; Fernandez Fernandez C; Collier J; Manley S
    Proc Natl Acad Sci U S A; 2014 Mar; 111(12):4566-71. PubMed ID: 24616530
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of
    Fiebig A
    J Bacteriol; 2019 Sep; 201(18):. PubMed ID: 31010900
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chiral twisting in a bacterial cytoskeletal polymer affects filament size and orientation.
    Shi H; Quint DA; Grason GM; Gopinathan A; Huang KC
    Nat Commun; 2020 Mar; 11(1):1408. PubMed ID: 32179732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Methodology for Ribosome Profiling of Key Stages of the Caulobacter crescentus Cell Cycle.
    Aretakis JR; Al-Husini N; Schrader JM
    Methods Enzymol; 2018; 612():443-465. PubMed ID: 30502952
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of the PhoB Regulon and Role of PhoU in the Phosphate Starvation Response of Caulobacter crescentus.
    Lubin EA; Henry JT; Fiebig A; Crosson S; Laub MT
    J Bacteriol; 2016 Jan; 198(1):187-200. PubMed ID: 26483520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-resolution 3D models of Caulobacter crescentus chromosome reveal genome structural variability and organization.
    Yildirim A; Feig M
    Nucleic Acids Res; 2018 May; 46(8):3937-3952. PubMed ID: 29529244
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic analysis of a novel pathway for D-xylose metabolism in Caulobacter crescentus.
    Stephens C; Christen B; Fuchs T; Sundaram V; Watanabe K; Jenal U
    J Bacteriol; 2007 Mar; 189(5):2181-5. PubMed ID: 17172333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly biocompatible super-resolution fluorescence imaging using the fast photoswitching fluorescent protein Kohinoor and SPoD-ExPAN with Lp-regularized image reconstruction.
    Wazawa T; Arai Y; Kawahara Y; Takauchi H; Washio T; Nagai T
    Microscopy (Oxf); 2018 Apr; 67(2):89-98. PubMed ID: 29409007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The intrinsically disordered C-terminal linker of FtsZ regulates protofilament dynamics and superstructure
    Sundararajan K; Goley ED
    J Biol Chem; 2017 Dec; 292(50):20509-20527. PubMed ID: 29089389
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polar Localization Hub Protein PopZ Restrains Adaptor-Dependent ClpXP Proteolysis in Caulobacter crescentus.
    Joshi KK; Battle CM; Chien P
    J Bacteriol; 2018 Oct; 200(20):. PubMed ID: 30082457
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characteristics of EYFP-actin and visualization of actin dynamics during ATP depletion and repletion.
    Herget-Rosenthal S; Hosford M; Kribben A; Atkinson SJ; Sandoval RM; Molitoris BA
    Am J Physiol Cell Physiol; 2001 Dec; 281(6):C1858-70. PubMed ID: 11698244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.