These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
606 related articles for article (PubMed ID: 18794883)
1. Class I PI3K in oncogenic cellular transformation. Zhao L; Vogt PK Oncogene; 2008 Sep; 27(41):5486-96. PubMed ID: 18794883 [TBL] [Abstract][Full Text] [Related]
2. Phosphatidylinositol 3-kinase: the oncoprotein. Vogt PK; Hart JR; Gymnopoulos M; Jiang H; Kang S; Bader AG; Zhao L; Denley A Curr Top Microbiol Immunol; 2010; 347():79-104. PubMed ID: 20582532 [TBL] [Abstract][Full Text] [Related]
3. PI3K pathway alterations in cancer: variations on a theme. Yuan TL; Cantley LC Oncogene; 2008 Sep; 27(41):5497-510. PubMed ID: 18794884 [TBL] [Abstract][Full Text] [Related]
4. Hot-spot mutations in p110alpha of phosphatidylinositol 3-kinase (pI3K): differential interactions with the regulatory subunit p85 and with RAS. Zhao L; Vogt PK Cell Cycle; 2010 Feb; 9(3):596-600. PubMed ID: 20009532 [TBL] [Abstract][Full Text] [Related]
5. Cancer-derived mutations in the regulatory subunit p85alpha of phosphoinositide 3-kinase function through the catalytic subunit p110alpha. Sun M; Hillmann P; Hofmann BT; Hart JR; Vogt PK Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15547-52. PubMed ID: 20713702 [TBL] [Abstract][Full Text] [Related]
6. PIK3CA cooperates with other phosphatidylinositol 3'-kinase pathway mutations to effect oncogenic transformation. Oda K; Okada J; Timmerman L; Rodriguez-Viciana P; Stokoe D; Shoji K; Taketani Y; Kuramoto H; Knight ZA; Shokat KM; McCormick F Cancer Res; 2008 Oct; 68(19):8127-36. PubMed ID: 18829572 [TBL] [Abstract][Full Text] [Related]
7. Molecular Mechanisms of Human Disease Mediated by Oncogenic and Primary Immunodeficiency Mutations in Class IA Phosphoinositide 3-Kinases. Dornan GL; Burke JE Front Immunol; 2018; 9():575. PubMed ID: 29616047 [TBL] [Abstract][Full Text] [Related]
8. Synergistic activation of a family of phosphoinositide 3-kinase via G-protein coupled and tyrosine kinase-related receptors. Katada T; Kurosu H; Okada T; Suzuki T; Tsujimoto N; Takasuga S; Kontani K; Hazeki O; Ui M Chem Phys Lipids; 1999 Apr; 98(1-2):79-86. PubMed ID: 10358930 [TBL] [Abstract][Full Text] [Related]
9. Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers. Geering B; Cutillas PR; Nock G; Gharbi SI; Vanhaesebroeck B Proc Natl Acad Sci U S A; 2007 May; 104(19):7809-14. PubMed ID: 17470792 [TBL] [Abstract][Full Text] [Related]
10. Positive and negative roles of p85 alpha and p85 beta regulatory subunits of phosphoinositide 3-kinase in insulin signaling. Ueki K; Fruman DA; Yballe CM; Fasshauer M; Klein J; Asano T; Cantley LC; Kahn CR J Biol Chem; 2003 Nov; 278(48):48453-66. PubMed ID: 14504291 [TBL] [Abstract][Full Text] [Related]
11. Insights into the oncogenic effects of PIK3CA mutations from the structure of p110alpha/p85alpha. Huang CH; Mandelker D; Gabelli SB; Amzel LM Cell Cycle; 2008 May; 7(9):1151-6. PubMed ID: 18418043 [TBL] [Abstract][Full Text] [Related]
12. Identification and characterization of the autophosphorylation sites of phosphoinositide 3-kinase isoforms beta and gamma. Czupalla C; Culo M; Müller EC; Brock C; Reusch HP; Spicher K; Krause E; Nürnberg B J Biol Chem; 2003 Mar; 278(13):11536-45. PubMed ID: 12502714 [TBL] [Abstract][Full Text] [Related]
13. Class IA PI3K regulatory subunits: p110-independent roles and structures. Fox M; Mott HR; Owen D Biochem Soc Trans; 2020 Aug; 48(4):1397-1417. PubMed ID: 32677674 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of constitutive phosphoinositide 3-kinase activation by oncogenic mutants of the p85 regulatory subunit. Shekar SC; Wu H; Fu Z; Yip SC; Nagajyothi ; Cahill SM; Girvin ME; Backer JM J Biol Chem; 2005 Jul; 280(30):27850-5. PubMed ID: 15932879 [TBL] [Abstract][Full Text] [Related]
15. The p85 regulatory subunit controls sequential activation of phosphoinositide 3-kinase by Tyr kinases and Ras. Jimenez C; Hernandez C; Pimentel B; Carrera AC J Biol Chem; 2002 Nov; 277(44):41556-62. PubMed ID: 12196526 [TBL] [Abstract][Full Text] [Related]
16. Identification of a unique co-operative phosphoinositide 3-kinase signaling mechanism regulating integrin alpha IIb beta 3 adhesive function in platelets. Schoenwaelder SM; Ono A; Sturgeon S; Chan SM; Mangin P; Maxwell MJ; Turnbull S; Mulchandani M; Anderson K; Kauffenstein G; Rewcastle GW; Kendall J; Gachet C; Salem HH; Jackson SP J Biol Chem; 2007 Sep; 282(39):28648-28658. PubMed ID: 17673465 [TBL] [Abstract][Full Text] [Related]
17. Oncogenic signaling of class I PI3K isoforms. Denley A; Kang S; Karst U; Vogt PK Oncogene; 2008 Apr; 27(18):2561-74. PubMed ID: 17998941 [TBL] [Abstract][Full Text] [Related]
18. Cloning, expression, purification, and characterization of the human Class Ia phosphoinositide 3-kinase isoforms. Meier TI; Cook JA; Thomas JE; Radding JA; Horn C; Lingaraj T; Smith MC Protein Expr Purif; 2004 Jun; 35(2):218-24. PubMed ID: 15135396 [TBL] [Abstract][Full Text] [Related]
19. Insights into the pathological mechanisms of p85α mutations using a yeast-based phosphatidylinositol 3-kinase model. Oliver MD; Fernández-Acero T; Luna S; Rodríguez-Escudero I; Molina M; Pulido R; Cid VJ Biosci Rep; 2017 Apr; 37(2):. PubMed ID: 28143957 [TBL] [Abstract][Full Text] [Related]
20. Regulation of class IA PI3Ks: is there a role for monomeric PI3K subunits? Geering B; Cutillas PR; Vanhaesebroeck B Biochem Soc Trans; 2007 Apr; 35(Pt 2):199-203. PubMed ID: 17371237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]