These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 18794902)

  • 1. Dual epithelial origin of vertebrate oral teeth.
    Soukup V; Epperlein HH; Horácek I; Cerny R
    Nature; 2008 Oct; 455(7214):795-8. PubMed ID: 18794902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental biology: Teeth in double trouble.
    Koentges G
    Nature; 2008 Oct; 455(7214):747-8. PubMed ID: 18843358
    [No Abstract]   [Full Text] [Related]  

  • 3. The conundrum of pharyngeal teeth origin: the role of germ layers, pouches, and gill slits.
    Huysseune A; Cerny R; Witten PE
    Biol Rev Camb Philos Soc; 2022 Feb; 97(1):414-447. PubMed ID: 34647411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ectoderm, endoderm, and the evolution of heterodont dentitions.
    Ohazama A; Haworth KE; Ota MS; Khonsari RH; Sharpe PT
    Genesis; 2010 Jun; 48(6):382-9. PubMed ID: 20533405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural crest potential for tooth development in a urodele amphibian: developmental and evolutionary significance.
    Graveson AC; Smith MM; Hall BK
    Dev Biol; 1997 Aug; 188(1):34-42. PubMed ID: 9245509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regionalisation of early head ectoderm is regulated by endoderm and prepatterns the orofacial epithelium.
    Haworth KE; Healy C; Morgan P; Sharpe PT
    Development; 2004 Oct; 131(19):4797-806. PubMed ID: 15342462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Embryonic origin of amphibian taste buds.
    Barlow LA; Northcutt RG
    Dev Biol; 1995 May; 169(1):273-85. PubMed ID: 7750643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple epithelia are required to develop teeth deep inside the pharynx.
    Oralová V; Rosa JT; Larionova D; Witten PE; Huysseune A
    Proc Natl Acad Sci U S A; 2020 May; 117(21):11503-11512. PubMed ID: 32398375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The genetic basis of modularity in the development and evolution of the vertebrate dentition.
    Stock DW
    Philos Trans R Soc Lond B Biol Sci; 2001 Oct; 356(1414):1633-53. PubMed ID: 11604128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lineage tracing of the endoderm during oral development.
    Rothova M; Thompson H; Lickert H; Tucker AS
    Dev Dyn; 2012 Jul; 241(7):1183-91. PubMed ID: 22581563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The odontode explosion: the origin of tooth-like structures in vertebrates.
    Fraser GJ; Cerny R; Soukup V; Bronner-Fraser M; Streelman JT
    Bioessays; 2010 Sep; 32(9):808-17. PubMed ID: 20730948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary and developmental origins of the vertebrate dentition.
    Huysseune A; Sire JY; Witten PE
    J Anat; 2009 Apr; 214(4):465-76. PubMed ID: 19422425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural crest contribution to mammalian tooth formation.
    Miletich I; Sharpe PT
    Birth Defects Res C Embryo Today; 2004 Jun; 72(2):200-12. PubMed ID: 15269893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of the primary mouth in Xenopus laevis.
    Dickinson AJ; Sive H
    Dev Biol; 2006 Jul; 295(2):700-13. PubMed ID: 16678148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of larval and transformed teeth in Ambystoma mexicanum (Urodela, Amphibia): an ultrastructural study.
    Wistuba J; Greven H; Clemen G
    Tissue Cell; 2002 Feb; 34(1):14-27. PubMed ID: 11989966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene deployment for tooth replacement in the rainbow trout (Oncorhynchus mykiss): a developmental model for evolution of the osteichthyan dentition.
    Fraser GJ; Berkovitz BK; Graham A; Smith MM
    Evol Dev; 2006; 8(5):446-57. PubMed ID: 16925680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tooth development in a scincid lizard, Chalcides viridanus (Squamata), with particular attention to enamel formation.
    Delgado S; Davit-Béal T; Allizard F; Sire JY
    Cell Tissue Res; 2005 Jan; 319(1):71-89. PubMed ID: 15592752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pre-oral gut contributes to facial structures in non-teleost fishes.
    Minarik M; Stundl J; Fabian P; Jandzik D; Metscher BD; Psenicka M; Gela D; Osorio-Pérez A; Arias-Rodriguez L; Horácek I; Cerny R
    Nature; 2017 Jul; 547(7662):209-212. PubMed ID: 28678781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of cranial neural crest cells in visceral arch muscle positioning and morphogenesis in the Mexican axolotl, Ambystoma mexicanum.
    Ericsson R; Cerny R; Falck P; Olsson L
    Dev Dyn; 2004 Oct; 231(2):237-47. PubMed ID: 15366001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural crest and the origin of ectomesenchyme: neural fold heterogeneity suggests an alternative hypothesis.
    Weston JA; Yoshida H; Robinson V; Nishikawa S; Fraser ST; Nishikawa S
    Dev Dyn; 2004 Jan; 229(1):118-30. PubMed ID: 14699583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.