BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 18794965)

  • 1. Hyperspectral in vivo two-photon microscopy of intrinsic contrast.
    Radosevich AJ; Bouchard MB; Burgess SA; Chen BR; Hillman EM
    Opt Lett; 2008 Sep; 33(18):2164-6. PubMed ID: 18794965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectrally resolved multiphoton imaging of in vivo and excised mouse skin tissues.
    Palero JA; de Bruijn HS; van der Ploeg van den Heuvel A; Sterenborg HJ; Gerritsen HC
    Biophys J; 2007 Aug; 93(3):992-1007. PubMed ID: 17449667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady state anisotropy two-photon microscopy resolves multiple, spectrally similar fluorophores, enabling in vivo multilabel imaging.
    Dubach JM; Vinegoni C; Weissleder R
    Opt Lett; 2014 Aug; 39(15):4482-5. PubMed ID: 25078208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral characterization and unmixing of intrinsic contrast in intact normal and diseased gastric tissues using hyperspectral two-photon microscopy.
    Grosberg LE; Radosevich AJ; Asfaha S; Wang TC; Hillman EM
    PLoS One; 2011; 6(5):e19925. PubMed ID: 21603623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation.
    Chen G; Chen J; Zhuo S; Xiong S; Zeng H; Jiang X; Chen R; Xie S
    Br J Dermatol; 2009 Jul; 161(1):48-55. PubMed ID: 19309369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of combined spectral lifetime microscopy for biology.
    Yan L; Rueden CT; White JG; Eliceiri KW
    Biotechniques; 2006 Sep; 41(3):249, 251, 253 passim. PubMed ID: 16989084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast pulse-pair control in multiphoton fluorescence laser-scanning microscopy.
    De AK; Goswami D
    J Biomed Opt; 2009; 14(6):064018. PubMed ID: 20059256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Method for Multiplexed Dynamic Intravital Multiphoton Imaging.
    Rakhymzhan A; Acs A; Leben R; Winkler TH; Hauser AE; Niesner RA
    Methods Mol Biol; 2021; 2350():145-156. PubMed ID: 34331284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-photon excitation fluorescent spectral and decay properties of retrograde neuronal tracer Fluoro-Gold.
    Miller MQ; Hernández IC; Chacko JV; Minderler S; Jowett N
    Sci Rep; 2021 Sep; 11(1):18053. PubMed ID: 34508127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperspectral multiphoton microscopy for
    Bares AJ; Mejooli MA; Pender MA; Leddon SA; Tilley S; Lin K; Dong J; Kim M; Fowell DJ; Nishimura N; Schaffer CB
    Optica; 2020 Nov; 7(11):1587-1601. PubMed ID: 33928182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence excitation analysis by two-photon confocal laser scanning microscopy: a new method to identify fluorescent nanoparticles on histological tissue sections.
    Kahn E; Tissot N; Frere P; Dauphin A; Boumhras M; Bachelet CM; Frouin F; Lizard G
    Int J Nanomedicine; 2012; 7():5545-54. PubMed ID: 23109806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiphoton microscopic imaging of in vivo hair mouse skin based on two-photon excited fluorescence and second harmonic generation.
    Jiang X; Zhuo S; Xu R; Chen J
    Scanning; 2012; 34(3):170-3. PubMed ID: 21932328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selecting optimal spectral bands for improved detection of autofluorescent biomarkers in multiphoton microscopy.
    Meyer BO; Stella MPJ; Holst B; Nielsen BS; Holmstrøm K; Andersen PE; Marti D
    J Biomed Opt; 2020 Jul; 25(7):1-13. PubMed ID: 32638570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization.
    Chen Y; Periasamy A
    Microsc Res Tech; 2004 Jan; 63(1):72-80. PubMed ID: 14677136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear optical imaging and spectral-lifetime computational analysis of endogenous and exogenous fluorophores in breast cancer.
    Provenzano PP; Rueden CT; Trier SM; Yan L; Ponik SM; Inman DR; Keely PJ; Eliceiri KW
    J Biomed Opt; 2008; 13(3):031220. PubMed ID: 18601544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phasor analysis of multiphoton spectral images distinguishes autofluorescence components of in vivo human skin.
    Fereidouni F; Bader AN; Colonna A; Gerritsen HC
    J Biophotonics; 2014 Aug; 7(8):589-96. PubMed ID: 23576407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiphoton FLIM imaging of NAD(P)H and FAD with one excitation wavelength.
    Cao R; Wallrabe H; Periasamy A
    J Biomed Opt; 2020 Jan; 25(1):1-16. PubMed ID: 31920048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-target spectrally resolved fluorescence lifetime imaging microscopy.
    Niehörster T; Löschberger A; Gregor I; Krämer B; Rahn HJ; Patting M; Koberling F; Enderlein J; Sauer M
    Nat Methods; 2016 Mar; 13(3):257-62. PubMed ID: 26808668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-Term Intravital Imaging of the Cornea, Skin, and Hair Follicle by Multiphoton Microscope.
    Wu YF; Tan HY; Lin SJ
    Methods Mol Biol; 2020; 2150():131-140. PubMed ID: 30969402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo spectral imaging of different cell types in the small intestine by two-photon excited autofluorescence.
    Orzekowsky-Schroeder R; Klinger A; Martensen B; Blessenohl M; Gebert A; Vogel A; Hüttmann G
    J Biomed Opt; 2011 Nov; 16(11):116025. PubMed ID: 22112130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.