BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 1879565)

  • 1. Heterogeneity in the Xenopus ribosomal transcription factor xUBF has a molecular basis distinct from that in mammals.
    Bachvarov D; Normandeau M; Moss T
    FEBS Lett; 1991 Aug; 288(1-2):55-9. PubMed ID: 1879565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The RNA polymerase I transcription factor xUBF contains 5 tandemly repeated HMG homology boxes.
    Bachvarov D; Moss T
    Nucleic Acids Res; 1991 May; 19(9):2331-5. PubMed ID: 2041774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variants of the Xenopus laevis ribosomal transcription factor xUBF are developmentally regulated by differential splicing.
    Guimond A; Moss T
    Nucleic Acids Res; 1992 Jul; 20(13):3361-6. PubMed ID: 1630907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. xUBF and Rib 1 are both required for formation of a stable polymerase I promoter complex in X. laevis.
    McStay B; Hu CH; Pikaard CS; Reeder RH
    EMBO J; 1991 Aug; 10(8):2297-303. PubMed ID: 2065665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition of the Xenopus ribosomal core promoter by the transcription factor xUBF involves multiple HMG box domains and leads to an xUBF interdomain interaction.
    Leblanc B; Read C; Moss T
    EMBO J; 1993 Feb; 12(2):513-25. PubMed ID: 8440241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. xUBF contains a novel dimerization domain essential for RNA polymerase I transcription.
    McStay B; Frazier MW; Reeder RH
    Genes Dev; 1991 Nov; 5(11):1957-68. PubMed ID: 1936987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping of a sequence essential for the nuclear transport of the Xenopus ribosomal transcription factor xUBF using a simple coupled translation-transport and acid extraction approach.
    Dimitrov SI; Bachvarov D; Moss T
    DNA Cell Biol; 1993 Apr; 12(3):275-81. PubMed ID: 8466650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperative binding of the Xenopus RNA polymerase I transcription factor xUBF to repetitive ribosomal gene enhancers.
    Putnam CD; Pikaard CS
    Mol Cell Biol; 1992 Nov; 12(11):4970-80. PubMed ID: 1406673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Xenopus ribosomal gene enhancers bind an essential polymerase I transcription factor, xUBF.
    Pikaard CS; McStay B; Schultz MC; Bell SP; Reeder RH
    Genes Dev; 1989 Nov; 3(11):1779-88. PubMed ID: 2606347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-range DNA looping by the Xenopus HMG-box transcription factor, xUBF.
    Bazett-Jones DP; Leblanc B; Herfort M; Moss T
    Science; 1994 May; 264(5162):1134-7. PubMed ID: 8178172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The DNA supercoiling architecture induced by the transcription factor xUBF requires three of its five HMG-boxes.
    Stefanovsky VY; Bazett-Jones DP; Pelletier G; Moss T
    Nucleic Acids Res; 1996 Aug; 24(16):3208-15. PubMed ID: 8774902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. xUBF, an RNA polymerase I transcription factor, binds crossover DNA with low sequence specificity.
    Hu CH; McStay B; Jeong SW; Reeder RH
    Mol Cell Biol; 1994 May; 14(5):2871-82. PubMed ID: 8164649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple domains of the RNA polymerase I activator hUBF interact with the TATA-binding protein complex hSL1 to mediate transcription.
    Jantzen HM; Chow AM; King DS; Tjian R
    Genes Dev; 1992 Oct; 6(10):1950-63. PubMed ID: 1398072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HMG box 4 is the principal determinant of species specificity in the RNA polymerase I transcription factor UBF.
    Cairns C; McStay B
    Nucleic Acids Res; 1995 Nov; 23(22):4583-90. PubMed ID: 8524646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA looping in the RNA polymerase I enhancesome is the result of non-cooperative in-phase bending by two UBF molecules.
    Stefanovsky VY; Pelletier G; Bazett-Jones DP; Crane-Robinson C; Moss T
    Nucleic Acids Res; 2001 Aug; 29(15):3241-7. PubMed ID: 11470882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental regulation of transcription factor AP-2 during Xenopus laevis embryogenesis.
    Winning RS; Shea LJ; Marcus SJ; Sargent TD
    Nucleic Acids Res; 1991 Jul; 19(13):3709-14. PubMed ID: 1852613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of two forms of the RNA polymerase I transcription factor UBF.
    O'Mahony DJ; Rothblum LI
    Proc Natl Acad Sci U S A; 1991 Apr; 88(8):3180-4. PubMed ID: 2014238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The RNA polymerase I transcription factor UBF is a sequence-tolerant HMG-box protein that can recognize structured nucleic acids.
    Copenhaver GP; Putnam CD; Denton ML; Pikaard CS
    Nucleic Acids Res; 1994 Jul; 22(13):2651-7. PubMed ID: 8041627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and characterization of Xenopus laevis xSox7 cDNA.
    Shiozawa M; Hiraoka Y; Komatsu N; Ogawa M; Sakai Y; Aiso S
    Biochim Biophys Acta; 1996 Nov; 1309(1-2):73-6. PubMed ID: 8950180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms governing species-specific transcription of ribosomal RNA.
    Bell SP; Pikaard CS; Reeder RH; Tjian R
    Cell; 1989 Nov; 59(3):489-97. PubMed ID: 2805069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.