These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 18795763)

  • 1. Spin-coupled description of aromaticity in the retro Diels-Alder reaction of norbornene.
    Hill JG; Cooper DL; Karadakov PB
    J Phys Chem A; 2008 Dec; 112(50):12823-8. PubMed ID: 18795763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin-coupled study of the electronic mechanism of the hetero-Diels-Alder reaction of acrolein and ethene.
    Blavins JJ; Cooper DL; Karadakov PB
    J Phys Chem A; 2005 Jan; 109(1):231-5. PubMed ID: 16839111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The change of aromaticity along a Diels-Alder reaction path.
    Corminboeuf C; Heine T; Weber J
    Org Lett; 2003 Apr; 5(7):1127-30. PubMed ID: 12659590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retro-Diels-Alder reaction of 4H-1,2-benzoxazines to generate o-quinone methides: involvement of highly polarized transition states.
    Sugimoto H; Nakamura S; Ohwada T
    J Org Chem; 2007 Dec; 72(26):10088-95. PubMed ID: 18052075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures of oxygenated cyclohexa-1,3-diene-maleic anyhydride cycloadducts. Structural evidence suggests a stepwise retro-Diels-Alder reaction.
    Goh YW; White JM
    Org Biomol Chem; 2007 Aug; 5(15):2354-6. PubMed ID: 17637952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density functional theory and atoms-in-molecule study on the role of two-electron stabilizing interactions in retro Diels-Alder reaction of cycloadducts derived from substituted cyclopentadiene and p-benzoquinone.
    Patil MP; Sunoj RB
    Org Biomol Chem; 2006 Nov; 4(21):3923-30. PubMed ID: 17047871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competitive Diels-Alder reactions: cyclopentadiene and phospholes with butadiene.
    Dinadayalane TC; Gayatri G; Sastry GN; Leszczynski J
    J Phys Chem A; 2005 Oct; 109(41):9310-23. PubMed ID: 16833273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The norbornene mystery revealed.
    Steinmann SN; Vogel P; Mo Y; Corminboeuf C
    Chem Commun (Camb); 2011 Jan; 47(1):227-9. PubMed ID: 20577683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Lewis acid catalysts on Diels-Alder and hetero-Diels-Alder cycloadditions sharing a common transition state.
    Celebi-Olçüm N; Ess DH; Aviyente V; Houk KN
    J Org Chem; 2008 Oct; 73(19):7472-80. PubMed ID: 18781801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cope rearrangement versus a novel tandem retro-Diels-Alder-Diels-Alder reaction with role reversal.
    Su KJ; Mieusset JL; Arion VB; Brecker L; Brinker UH
    Org Lett; 2007 Jan; 9(1):113-5. PubMed ID: 17192098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the mechanism of polar Diels-Alder reactions.
    Domingo LR; Sáez JA
    Org Biomol Chem; 2009 Sep; 7(17):3576-83. PubMed ID: 19675915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A theoretical study on the reaction mechanism for the bergman cyclization from the perspective of the electron localization function and catastrophe theory.
    Santos JC; Andres J; Aizman A; Fuentealba P; Polo V
    J Phys Chem A; 2005 Apr; 109(16):3687-93. PubMed ID: 16839035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic and steric effects on the mechanism of the inverse electron demand Diels-Alder reaction of 2-aminopyrroles with 1,3,5-triazines: identification of five intermediates by 1H, 13C, 15N, and 19F NMR spectroscopy.
    De Rosa M; Arnold D
    J Org Chem; 2009 Jan; 74(1):319-28. PubMed ID: 19053577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clarification of the mechanism of the cascade reactions between amino-substituted heterocycles and 1,3,5-triazines.
    Yu ZX; Dang Q; Wu YD
    J Org Chem; 2005 Feb; 70(3):998-1005. PubMed ID: 15675860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vinylcyclobutane-cyclohexene rearrangement: theoretical exploration of mechanism and relationship to the Diels-Alder potential surface.
    Northrop BH; Houk KN
    J Org Chem; 2006 Jan; 71(1):3-13. PubMed ID: 16388611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gas-Phase Retro-Diels-Alder Reactions of Cyclohexene, 1-Methylcyclohexene, and 4-Methylcyclohexene following Photoexcitation at 193 nm: A Velocity-Map Imaging Study.
    Gardiner SH; Lipciuc ML; Vallance C
    J Phys Chem A; 2015 Dec; 119(50):12218-23. PubMed ID: 26352050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Femtosecond dynamics and coherence of ionic retro-Diels-Alder reactions.
    Li S; Jochim B; Jackson JE; Dantus M
    J Chem Phys; 2021 Jul; 155(4):044303. PubMed ID: 34340396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition state distortion energies correlate with activation energies of 1,4-dihydrogenations and Diels-Alder cycloadditions of aromatic molecules.
    Hayden AE; Houk KN
    J Am Chem Soc; 2009 Mar; 131(11):4084-9. PubMed ID: 19256544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chiral anthracene and anthrone templates as stereocontrolling elements in Diels-Alder/retro Diels-Alder sequences.
    Burgess KL; Corbett MS; Eugenio P; Lajkiewicz NJ; Liu X; Sanyal A; Yan W; Yuan Q; Snyder JK
    Bioorg Med Chem; 2005 Sep; 13(17):5299-309. PubMed ID: 16046136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retro-Diels-Alder approach to the synthesis of π-expanded azuliporphyrins and their porphyrinoid aromaticity.
    Okujima T; Kikkawa T; Nakano H; Kubota H; Fukugami N; Ono N; Yamada H; Uno H
    Chemistry; 2012 Oct; 18(40):12854-63. PubMed ID: 22915443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.