These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Phosphodiesterase isoenzymes in human ureteral smooth muscle: identification, characterization, and functional effects of various phosphodiesterase inhibitors in vitro. Stief CG; Taher A; Truss M; Becker AJ; Schulz-Knappe P; Meyer M; Uckert S; Forssmann WG; Jonas U Urol Int; 1995; 55(4):183-9. PubMed ID: 8588263 [TBL] [Abstract][Full Text] [Related]
27. Inhibition of calmodulin dependent c-AMP-phosphodiesterase by moxaverine and papaverine. Mannhold R Arzneimittelforschung; 1988 Dec; 38(12):1806-8. PubMed ID: 2854468 [TBL] [Abstract][Full Text] [Related]
28. Differential regulation of human monocyte-derived TNF alpha and IL-1 beta by type IV cAMP-phosphodiesterase (cAMP-PDE) inhibitors. Verghese MW; McConnell RT; Strickland AB; Gooding RC; Stimpson SA; Yarnall DP; Taylor JD; Furdon PJ J Pharmacol Exp Ther; 1995 Mar; 272(3):1313-20. PubMed ID: 7891349 [TBL] [Abstract][Full Text] [Related]
29. Role of cyclic nucleotide phosphodiesterase isozymes in intact canine trachealis. Torphy TJ; Zhou HL; Burman M; Huang LB Mol Pharmacol; 1991 Mar; 39(3):376-84. PubMed ID: 1848659 [TBL] [Abstract][Full Text] [Related]
30. Lack of cyclic nucleotide regulation of MBCQ-induced relaxation of rat ileal smooth muscle. Kaneda T; Yamamoto H; Azegami Y; Shimizu K; Urakawa N; Nakajyo S J Smooth Muscle Res; 2003 Jun; 39(3):47-54. PubMed ID: 14572172 [TBL] [Abstract][Full Text] [Related]
31. Characterization of the cyclic nucleotide phosphodiesterase subtypes involved in the regulation of the L-type Ca2+ current in rat ventricular myocytes. Verde I; Vandecasteele G; Lezoualc'h F; Fischmeister R Br J Pharmacol; 1999 May; 127(1):65-74. PubMed ID: 10369457 [TBL] [Abstract][Full Text] [Related]
32. The difference in the inhibitory mechanisms of papaverine on vascular and intestinal smooth muscles. Kaneda T; Shimizu K; Nakajyo S; Urakawa N Eur J Pharmacol; 1998 Aug; 355(2-3):149-57. PubMed ID: 9760029 [TBL] [Abstract][Full Text] [Related]
33. Phosphodiesterase activity of the lower urinary tract. Levin RM; Einstein R; Wein AJ J Urol; 1982 Sep; 128(3):615-7. PubMed ID: 6288975 [TBL] [Abstract][Full Text] [Related]
34. Effects of cilostazol, a selective cAMP phosphodiesterase inhibitor on the contraction of vascular smooth muscle. Tanaka T; Ishikawa T; Hagiwara M; Onoda K; Itoh H; Hidaka H Pharmacology; 1988; 36(5):313-20. PubMed ID: 2841693 [TBL] [Abstract][Full Text] [Related]
35. Effect of 2-(4-benzyl-piperidino)-1-(4-hydroxyphenyl)-1-propranolol on adenylate cyclase and 3,5'-cyclic AMP phosphodiesterase in vitro. Yamashita Y; Kawai M; Hotta K Jpn J Pharmacol; 1976 Jun; 26(3):391-4. PubMed ID: 185445 [No Abstract] [Full Text] [Related]
36. Inhibition of a phosphodiesterase III in the lysis-sensitive target-induced elevation of cyclic AMP (cAMP) in human natural killer cells. Whalen MM; Crews JD Biochem Pharmacol; 2000 Aug; 60(4):499-506. PubMed ID: 10874124 [TBL] [Abstract][Full Text] [Related]
37. Multiple actions of glaucine on cyclic nucleotide phosphodiesterases, alpha 1-adrenoceptor and benzothiazepine binding site at the calcium channel. Ivorra MD; Lugnier C; Schott C; Catret M; Noguera MA; Anselmi E; D'Ocon P Br J Pharmacol; 1992 Jun; 106(2):387-94. PubMed ID: 1327380 [TBL] [Abstract][Full Text] [Related]
38. Hydrolysis of N-methyl-D-aspartate receptor-stimulated cAMP and cGMP by PDE4 and PDE2 phosphodiesterases in primary neuronal cultures of rat cerebral cortex and hippocampus. Suvarna NU; O'Donnell JM J Pharmacol Exp Ther; 2002 Jul; 302(1):249-56. PubMed ID: 12065724 [TBL] [Abstract][Full Text] [Related]