These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 18796536)

  • 1. TM9SF4 is required for Drosophila cellular immunity via cell adhesion and phagocytosis.
    Bergeret E; Perrin J; Williams M; Grunwald D; Engel E; Thevenon D; Taillebourg E; Bruckert F; Cosson P; Fauvarque MO
    J Cell Sci; 2008 Oct; 121(Pt 20):3325-34. PubMed ID: 18796536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nonaspanins TM9SF2 and TM9SF4 regulate the plasma membrane localization and signalling activity of the peptidoglycan recognition protein PGRP-LC in Drosophila.
    Perrin J; Mortier M; Jacomin AC; Viargues P; Thevenon D; Fauvarque MO
    J Innate Immun; 2015; 7(1):37-46. PubMed ID: 25139117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of nonaspanin protein sequences and expression studies in zebrafish.
    Pruvot B; Laurens V; Salvadori F; Solary E; Pichon L; Chluba J
    Immunogenetics; 2010 Oct; 62(10):681-99. PubMed ID: 20820770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modes of phagocytosis of Gram-positive and Gram-negative bacteria by Spodoptera littoralis granular haemocytes.
    Costa SC; Ribeiro C; Girard PA; Zumbihl R; Brehélin M
    J Insect Physiol; 2005 Jan; 51(1):39-46. PubMed ID: 15686644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A systems biology analysis of the Drosophila phagosome.
    Stuart LM; Boulais J; Charriere GM; Hennessy EJ; Brunet S; Jutras I; Goyette G; Rondeau C; Letarte S; Huang H; Ye P; Morales F; Kocks C; Bader JS; Desjardins M; Ezekowitz RA
    Nature; 2007 Jan; 445(7123):95-101. PubMed ID: 17151602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rac1 signalling in the Drosophila larval cellular immune response.
    Williams MJ; Wiklund ML; Wikman S; Hultmark D
    J Cell Sci; 2006 May; 119(Pt 10):2015-24. PubMed ID: 16621891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of Drosophila cellular immunity by directed expression of the ExoS toxin GAP domain of Pseudomonas aeruginosa.
    Avet-Rochex A; Bergeret E; Attree I; Meister M; Fauvarque MO
    Cell Microbiol; 2005 Jun; 7(6):799-810. PubMed ID: 15888083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drosophila phagocytosis - still many unknowns under the surface.
    Ulvila J; Vanha-Aho LM; Rämet M
    APMIS; 2011 Oct; 119(10):651-62. PubMed ID: 21917002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A beta integrin subunit regulates bacterial phagocytosis in medfly haemocytes.
    Mamali I; Lamprou I; Karagiannis F; Karakantza M; Lampropoulou M; Marmaras VJ
    Dev Comp Immunol; 2009 Jul; 33(7):858-66. PubMed ID: 19428487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct signalling pathways promote phagocytosis of bacteria, latex beads and lipopolysaccharide in medfly haemocytes.
    Lamprou I; Mamali I; Dallas K; Fertakis V; Lampropoulou M; Marmaras VJ
    Immunology; 2007 Jul; 121(3):314-27. PubMed ID: 17376199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and functional analysis of antifungal immune response genes in Drosophila.
    Jin LH; Shim J; Yoon JS; Kim B; Kim J; Kim-Ha J; Kim YJ
    PLoS Pathog; 2008 Oct; 4(10):e1000168. PubMed ID: 18833296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic ablation of Drosophila phagocytes reveals their contribution to both development and resistance to bacterial infection.
    Defaye A; Evans I; Crozatier M; Wood W; Lemaitre B; Leulier F
    J Innate Immun; 2009; 1(4):322-34. PubMed ID: 20375589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The immunoglobulin family protein Hemolin mediates cellular immune responses to bacteria in the insect Manduca sexta.
    Eleftherianos I; Gökçen F; Felföldi G; Millichap PJ; Trenczek TE; ffrench-Constant RH; Reynolds SE
    Cell Microbiol; 2007 May; 9(5):1137-47. PubMed ID: 17166232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Senescence of the cellular immune response in Drosophila melanogaster.
    Mackenzie DK; Bussière LF; Tinsley MC
    Exp Gerontol; 2011 Nov; 46(11):853-9. PubMed ID: 21798332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defense reactions of Dermatobia hominis (Diptera: Cuterebridae) larval hemocytes.
    Faraldo AC; Lello E
    Biocell; 2003 Aug; 27(2):197-203. PubMed ID: 14510238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drosophila cellular immunity: a story of migration and adhesion.
    Fauvarque MO; Williams MJ
    J Cell Sci; 2011 May; 124(Pt 9):1373-82. PubMed ID: 21502134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microarray analysis of immune challenged Drosophila hemocytes.
    Johansson KC; Metzendorf C; Söderhäll K
    Exp Cell Res; 2005 Apr; 305(1):145-55. PubMed ID: 15777795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli.
    Rämet M; Manfruelli P; Pearson A; Mathey-Prevot B; Ezekowitz RA
    Nature; 2002 Apr; 416(6881):644-8. PubMed ID: 11912489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sterile wounding is a minimal and sufficient trigger for a cellular immune response in Drosophila melanogaster.
    Márkus R; Kurucz E; Rus F; Andó I
    Immunol Lett; 2005 Oct; 101(1):108-11. PubMed ID: 15964636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drosophila serpin 27A is a likely target for immune suppression of the blood cell-mediated melanotic encapsulation response.
    Nappi AJ; Frey F; Carton Y
    J Insect Physiol; 2005 Feb; 51(2):197-205. PubMed ID: 15749104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.