BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 18798174)

  • 1. Transcriptional and metabolic response in yeast Saccharomyces cerevisiae cells during polyethylene glycol-dependent transformation.
    Kawai S; Phan TA; Kono E; Harada K; Okai C; Fukusaki E; Murata K
    J Basic Microbiol; 2009 Feb; 49(1):73-81. PubMed ID: 18798174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualized investigation of yeast transformation induced with Li+ and polyethylene glycol.
    Chen P; Liu HH; Cui R; Zhang ZL; Pang DW; Xie ZX; Zheng HZ; Lu ZX; Tong H
    Talanta; 2008 Oct; 77(1):262-8. PubMed ID: 18804630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure.
    Gietz RD; Schiestl RH; Willems AR; Woods RA
    Yeast; 1995 Apr; 11(4):355-60. PubMed ID: 7785336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specificity of DNA uptake during whole cell transformation of S. cerevisiae.
    Bruschi CV; Comer AR; Howe GA
    Yeast; 1987 Jun; 3(2):131-7. PubMed ID: 3332965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression profiling of the bottom fermenting yeast Saccharomyces pastorianus orthologous genes using oligonucleotide microarrays.
    Minato T; Yoshida S; Ishiguro T; Shimada E; Mizutani S; Kobayashi O; Yoshimoto H
    Yeast; 2009 Mar; 26(3):147-65. PubMed ID: 19243081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast transformation process studied by fluorescence labeling technique.
    Zheng HZ; Liu HH; Chen SX; Lu ZX; Zhang ZL; Pang DW; Xie ZX; Shen P
    Bioconjug Chem; 2005; 16(2):250-4. PubMed ID: 15769077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in gene expression of commercial baker's yeast during an air-drying process that simulates dried yeast production.
    Nakamura T; Mizukami-Murata S; Ando A; Murata Y; Takagi H; Shima J
    J Biosci Bioeng; 2008 Oct; 106(4):405-8. PubMed ID: 19000619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The global gene expression profile of the model fungus Saccharomyces cerevisiae induced by thymol.
    Bi X; Guo N; Jin J; Liu J; Feng H; Shi J; Xiang H; Wu X; Dong J; Hu H; Yan S; Yu C; Wang X; Deng X; Yu L
    J Appl Microbiol; 2010 Feb; 108(2):712-22. PubMed ID: 19702861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of genes whose expressions are enhanced or reduced in baker's yeast during fed-batch culture process using molasses medium by DNA microarray analysis.
    Shima J; Kuwazaki S; Tanaka F; Watanabe H; Yamamoto H; Nakajima R; Tokashiki T; Tamura H
    Int J Food Microbiol; 2005 Jun; 102(1):63-71. PubMed ID: 15925003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method.
    Gietz RD; Schiestl RH
    Nat Protoc; 2007; 2(1):38-41. PubMed ID: 17401336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of copper toxicity in Saccharomyces cerevisiae determined by microarray analysis.
    Yasokawa D; Murata S; Kitagawa E; Iwahashi Y; Nakagawa R; Hashido T; Iwahashi H
    Environ Toxicol; 2008 Oct; 23(5):599-606. PubMed ID: 18528910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional genomic analysis of commercial baker's yeast during initial stages of model dough-fermentation.
    Tanaka F; Ando A; Nakamura T; Takagi H; Shima J
    Food Microbiol; 2006 Dec; 23(8):717-28. PubMed ID: 16943074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidation of the functional genomics of antioxidant-based inhibition of aflatoxin biosynthesis.
    Kim JH; Yu J; Mahoney N; Chan KL; Molyneux RJ; Varga J; Bhatnagar D; Cleveland TE; Nierman WC; Campbell BC
    Int J Food Microbiol; 2008 Feb; 122(1-2):49-60. PubMed ID: 18166238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early transcriptional response of wine yeast after rehydration: osmotic shock and metabolic activation.
    Novo M; Beltran G; Rozes N; Guillamon JM; Sokol S; Leberre V; François J; Mas A
    FEMS Yeast Res; 2007 Mar; 7(2):304-16. PubMed ID: 17132143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray.
    Dinh TN; Nagahisa K; Yoshikawa K; Hirasawa T; Furusawa C; Shimizu H
    Bioprocess Biosyst Eng; 2009 Aug; 32(5):681-8. PubMed ID: 19125301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA microarray analyses reveal a post-irradiation differential time-dependent gene expression profile in yeast cells exposed to X-rays and gamma-rays.
    Kimura S; Ishidou E; Kurita S; Suzuki Y; Shibato J; Rakwal R; Iwahashi H
    Biochem Biophys Res Commun; 2006 Jul; 346(1):51-60. PubMed ID: 16759639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method.
    Gietz RD; Schiestl RH
    Nat Protoc; 2007; 2(1):1-4. PubMed ID: 17401330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of transcriptional responses to osmotic stresses induced by NaCl and sorbitol additions in Saccharomyces cerevisiae using DNA microarray.
    Hirasawa T; Ashitani K; Yoshikawa K; Nagahisa K; Furusawa C; Katakura Y; Shimizu H; Shioya S
    J Biosci Bioeng; 2006 Dec; 102(6):568-71. PubMed ID: 17270724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gaining insight into the response logic of Saccharomyces cerevisiae to heat shock by combining expression profiles with metabolic pathways.
    Ye Y; Zhu Y; Pan L; Li L; Wang X; Lin Y
    Biochem Biophys Res Commun; 2009 Jul; 385(3):357-62. PubMed ID: 19463789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method.
    Gietz RD; Schiestl RH
    Nat Protoc; 2007; 2(1):35-7. PubMed ID: 17401335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.