These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 1879856)
1. Control of specific absorption rate distribution using capacitive electrodes and inductive aperture-type applicators: implications for radiofrequency hyperthermia. Kato H; Hand JW; Prior MV; Furukawa M; Yamamoto O; Ishida T IEEE Trans Biomed Eng; 1991 Jul; 38(7):644-7. PubMed ID: 1879856 [TBL] [Abstract][Full Text] [Related]
2. Contact flexible microstrip applicators (CFMA) in a range from microwaves up to short waves. Gelvich EA; Mazokhin VN IEEE Trans Biomed Eng; 2002 Sep; 49(9):1015-23. PubMed ID: 12214873 [TBL] [Abstract][Full Text] [Related]
3. Capacitive heating of phantom and human tumors with an 8 MHz radiofrequency applicator (Thermotron RF-8). Song CW; Rhee JG; Lee CK; Levitt SH Int J Radiat Oncol Biol Phys; 1986 Mar; 12(3):365-72. PubMed ID: 3957735 [TBL] [Abstract][Full Text] [Related]
4. The size and distance of the opposite flat applicator change the SAR and thermal distributions of RF capacitive intracavitary hyperthermia. Hiraki Y; Nakajo M; Takeshita T; Churei H Int J Hyperthermia; 2000; 16(3):205-18. PubMed ID: 10830584 [TBL] [Abstract][Full Text] [Related]
5. A new applicator utilizing distributed electrodes for hyperthermia: a theoretical approach. Kato H; Uchida N; Kasai T; Ishida T Int J Hyperthermia; 1995; 11(2):287-94. PubMed ID: 7790741 [TBL] [Abstract][Full Text] [Related]
6. Use of the impedance method to calculate 3-D power deposition patterns for hyperthermia with capacitive plate electrodes. Orcutt N; Gandhi OP IEEE Trans Biomed Eng; 1990 Jan; 37(1):36-43. PubMed ID: 2303268 [TBL] [Abstract][Full Text] [Related]
7. Time-multiplexed two-channel capacitive radiofrequency hyperthermia with nanoparticle mediation. Kim KS; Hernandez D; Lee SY Biomed Eng Online; 2015 Oct; 14():95. PubMed ID: 26499058 [TBL] [Abstract][Full Text] [Related]
8. Nanoparticle-mediated radiofrequency capacitive hyperthermia: A phantom study with magnetic resonance thermometry. Kim KS; Lee SY Int J Hyperthermia; 2015; 31(8):831-9. PubMed ID: 26555005 [TBL] [Abstract][Full Text] [Related]
9. FDTD simulations to assess the performance of CFMA-434 applicators for superficial hyperthermia. Kok HP; De Greef M; Correia D; Vörding PJ; Van Stam G; Gelvich EA; Bel A; Crezee J Int J Hyperthermia; 2009; 25(6):462-76. PubMed ID: 19657850 [TBL] [Abstract][Full Text] [Related]
10. SAR deposition by curved CFMA-434 applicators for superficial hyperthermia: Measurements and simulations. Petra Kok H; Correia D; De Greef M; Van Stam G; Bel A; Crezee J Int J Hyperthermia; 2010; 26(2):171-84. PubMed ID: 20146571 [TBL] [Abstract][Full Text] [Related]
11. Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators. Surowiec A; Shrivastava PN; Astrahan M; Petrovich Z Int J Hyperthermia; 1992; 8(6):795-807. PubMed ID: 1479205 [TBL] [Abstract][Full Text] [Related]
12. Present and future status of noninvasive selective deep heating using RF in hyperthermia. Kato H; Ishida T Med Biol Eng Comput; 1993 Jul; 31 Suppl():S2-11. PubMed ID: 8231321 [TBL] [Abstract][Full Text] [Related]
13. Radio-frequency ring applicator: energy distributions measured in the CDRH phantom. van Rhoon GC; Raskmark P; Hornsleth SN; van den Berg PM Med Biol Eng Comput; 1994 Nov; 32(6):643-8. PubMed ID: 7723423 [TBL] [Abstract][Full Text] [Related]
14. Radiofrequency-induced hyperthermia: computer simulation of specific absorption rate distributions using realistic anatomical models. Armitage DW; LeVeen HH; Pethig R Phys Med Biol; 1983 Jan; 28(1):31-42. PubMed ID: 6828556 [TBL] [Abstract][Full Text] [Related]
15. [Temperature distribution and geometry of the electrodes in RF interstitial hyperthermia using circular and interstitial electrodes]. Kataoka M; Nishiyama Y; Fujii T; Kawamura M; Mogami H; Itoh H; Iio A; Hamamoto K Nihon Igaku Hoshasen Gakkai Zasshi; 1992 May; 52(5):646-52. PubMed ID: 1508637 [TBL] [Abstract][Full Text] [Related]
16. Prospects for radiofrequency hyperthermia applicator research. I--Pre-optimised prototypes of endocavitary applicators with matching interfaces for prostate hyperplasia and cancer treatments. Franconi C; Vrba J; Micali F; Pesce F Int J Hyperthermia; 2011; 27(2):187-98. PubMed ID: 21250898 [TBL] [Abstract][Full Text] [Related]
17. Thermal distribution of radio-frequency inductive hyperthermia using an inductive aperture-type applicator: evaluation of the effect of tumour size and depth. Kuroda S; Uchida N; Sugimura K; Kato H Med Biol Eng Comput; 1999 May; 37(3):285-90. PubMed ID: 10505376 [TBL] [Abstract][Full Text] [Related]
18. Further observations on tissue heating patterns using an invasive ground probe with radiofrequency hyperthermia system. Yamanashi WS; Boddie AW; Frazer JW; McBride CM; Martin RG Med Instrum; 1984; 18(4):220-3. PubMed ID: 6493095 [TBL] [Abstract][Full Text] [Related]
19. An RF concentrating method using inductive aperture-type applicators. Fujita Y; Kato H; Ishida T IEEE Trans Biomed Eng; 1993 Jan; 40(1):110-3. PubMed ID: 8468071 [TBL] [Abstract][Full Text] [Related]
20. Deep-heating characteristics of an RF capacitive heating device. Kato H; Hiraoka M; Nakajima T; Ishida T Int J Hyperthermia; 1985; 1(1):15-28. PubMed ID: 3915511 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]