BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 1879856)

  • 1. Control of specific absorption rate distribution using capacitive electrodes and inductive aperture-type applicators: implications for radiofrequency hyperthermia.
    Kato H; Hand JW; Prior MV; Furukawa M; Yamamoto O; Ishida T
    IEEE Trans Biomed Eng; 1991 Jul; 38(7):644-7. PubMed ID: 1879856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contact flexible microstrip applicators (CFMA) in a range from microwaves up to short waves.
    Gelvich EA; Mazokhin VN
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):1015-23. PubMed ID: 12214873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capacitive heating of phantom and human tumors with an 8 MHz radiofrequency applicator (Thermotron RF-8).
    Song CW; Rhee JG; Lee CK; Levitt SH
    Int J Radiat Oncol Biol Phys; 1986 Mar; 12(3):365-72. PubMed ID: 3957735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-multiplexed two-channel capacitive radiofrequency hyperthermia with nanoparticle mediation.
    Kim KS; Hernandez D; Lee SY
    Biomed Eng Online; 2015 Oct; 14():95. PubMed ID: 26499058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The size and distance of the opposite flat applicator change the SAR and thermal distributions of RF capacitive intracavitary hyperthermia.
    Hiraki Y; Nakajo M; Takeshita T; Churei H
    Int J Hyperthermia; 2000; 16(3):205-18. PubMed ID: 10830584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new applicator utilizing distributed electrodes for hyperthermia: a theoretical approach.
    Kato H; Uchida N; Kasai T; Ishida T
    Int J Hyperthermia; 1995; 11(2):287-94. PubMed ID: 7790741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of the impedance method to calculate 3-D power deposition patterns for hyperthermia with capacitive plate electrodes.
    Orcutt N; Gandhi OP
    IEEE Trans Biomed Eng; 1990 Jan; 37(1):36-43. PubMed ID: 2303268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticle-mediated radiofrequency capacitive hyperthermia: A phantom study with magnetic resonance thermometry.
    Kim KS; Lee SY
    Int J Hyperthermia; 2015; 31(8):831-9. PubMed ID: 26555005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FDTD simulations to assess the performance of CFMA-434 applicators for superficial hyperthermia.
    Kok HP; De Greef M; Correia D; Vörding PJ; Van Stam G; Gelvich EA; Bel A; Crezee J
    Int J Hyperthermia; 2009; 25(6):462-76. PubMed ID: 19657850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SAR deposition by curved CFMA-434 applicators for superficial hyperthermia: Measurements and simulations.
    Petra Kok H; Correia D; De Greef M; Van Stam G; Bel A; Crezee J
    Int J Hyperthermia; 2010; 26(2):171-84. PubMed ID: 20146571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators.
    Surowiec A; Shrivastava PN; Astrahan M; Petrovich Z
    Int J Hyperthermia; 1992; 8(6):795-807. PubMed ID: 1479205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Present and future status of noninvasive selective deep heating using RF in hyperthermia.
    Kato H; Ishida T
    Med Biol Eng Comput; 1993 Jul; 31 Suppl():S2-11. PubMed ID: 8231321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radio-frequency ring applicator: energy distributions measured in the CDRH phantom.
    van Rhoon GC; Raskmark P; Hornsleth SN; van den Berg PM
    Med Biol Eng Comput; 1994 Nov; 32(6):643-8. PubMed ID: 7723423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiofrequency-induced hyperthermia: computer simulation of specific absorption rate distributions using realistic anatomical models.
    Armitage DW; LeVeen HH; Pethig R
    Phys Med Biol; 1983 Jan; 28(1):31-42. PubMed ID: 6828556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Temperature distribution and geometry of the electrodes in RF interstitial hyperthermia using circular and interstitial electrodes].
    Kataoka M; Nishiyama Y; Fujii T; Kawamura M; Mogami H; Itoh H; Iio A; Hamamoto K
    Nihon Igaku Hoshasen Gakkai Zasshi; 1992 May; 52(5):646-52. PubMed ID: 1508637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospects for radiofrequency hyperthermia applicator research. I--Pre-optimised prototypes of endocavitary applicators with matching interfaces for prostate hyperplasia and cancer treatments.
    Franconi C; Vrba J; Micali F; Pesce F
    Int J Hyperthermia; 2011; 27(2):187-98. PubMed ID: 21250898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal distribution of radio-frequency inductive hyperthermia using an inductive aperture-type applicator: evaluation of the effect of tumour size and depth.
    Kuroda S; Uchida N; Sugimura K; Kato H
    Med Biol Eng Comput; 1999 May; 37(3):285-90. PubMed ID: 10505376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Further observations on tissue heating patterns using an invasive ground probe with radiofrequency hyperthermia system.
    Yamanashi WS; Boddie AW; Frazer JW; McBride CM; Martin RG
    Med Instrum; 1984; 18(4):220-3. PubMed ID: 6493095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An RF concentrating method using inductive aperture-type applicators.
    Fujita Y; Kato H; Ishida T
    IEEE Trans Biomed Eng; 1993 Jan; 40(1):110-3. PubMed ID: 8468071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep-heating characteristics of an RF capacitive heating device.
    Kato H; Hiraoka M; Nakajima T; Ishida T
    Int J Hyperthermia; 1985; 1(1):15-28. PubMed ID: 3915511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.