These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 18798578)
21. Fibrous and helical calcite crystals induced by synthetic polypeptides containing o-phospho-L-serine and o-phospho-L-threonine. Hayashi S; Ohkawa K; Suwa Y; Sugawara T; Asami T; Yamamoto H Macromol Biosci; 2008 Jan; 8(1):46-59. PubMed ID: 17902188 [TBL] [Abstract][Full Text] [Related]
22. Calcium phosphates and glass composite coatings on zirconia for enhanced biocompatibility. Kim HW; Georgiou G; Knowles JC; Koh YH; Kim HE Biomaterials; 2004 Aug; 25(18):4203-13. PubMed ID: 15046910 [TBL] [Abstract][Full Text] [Related]
23. Electrospun protein fibers as matrices for tissue engineering. Li M; Mondrinos MJ; Gandhi MR; Ko FK; Weiss AS; Lelkes PI Biomaterials; 2005 Oct; 26(30):5999-6008. PubMed ID: 15894371 [TBL] [Abstract][Full Text] [Related]
24. Identification of Collagen-Derived Hydroxyproline (Hyp)-Containing Cyclic Dipeptides with High Oral Bioavailability: Efficient Formation of Cyclo(X-Hyp) from X-Hyp-Gly-Type Tripeptides by Heating. Taga Y; Kusubata M; Ogawa-Goto K; Hattori S J Agric Food Chem; 2017 Nov; 65(43):9514-9521. PubMed ID: 28988478 [TBL] [Abstract][Full Text] [Related]
25. The biomimetics of enamel: a paradigm for organized biomaterials synthesis. Mann S Ciba Found Symp; 1997; 205():261-9; discussion 269-74. PubMed ID: 9189630 [TBL] [Abstract][Full Text] [Related]
26. Triple-helix propensity of hydroxyproline and fluoroproline: comparison of host-guest and repeating tripeptide collagen models. Persikov AV; Ramshaw JA; Kirkpatrick A; Brodsky B J Am Chem Soc; 2003 Sep; 125(38):11500-1. PubMed ID: 13129344 [TBL] [Abstract][Full Text] [Related]
27. Coating electrospun poly(epsilon-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering. Li X; Xie J; Yuan X; Xia Y Langmuir; 2008 Dec; 24(24):14145-50. PubMed ID: 19053657 [TBL] [Abstract][Full Text] [Related]
28. Characterization of collagen-like heterotrimers: implications for triple-helix stability. Berisio R; Granata V; Vitagliano L; Zagari A Biopolymers; 2004 Apr; 73(6):682-8. PubMed ID: 15048771 [TBL] [Abstract][Full Text] [Related]
29. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship. El-Ghannam AR J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396 [TBL] [Abstract][Full Text] [Related]
30. Silica precipitation by synthetic minicollagens. Weiher F; Schatz M; Steinem C; Geyer A Biomacromolecules; 2013 Mar; 14(3):683-7. PubMed ID: 23363425 [TBL] [Abstract][Full Text] [Related]
31. Electrospun chitosan-gelatin nanofiberous scaffold: fabrication and in vitro evaluation. Jafari J; Emami SH; Samadikuchaksaraei A; Bahar MA; Gorjipour F Biomed Mater Eng; 2011; 21(2):99-112. PubMed ID: 21654066 [TBL] [Abstract][Full Text] [Related]
32. Conformational effects of Gly-X-Gly interruptions in the collagen triple helix. Bella J; Liu J; Kramer R; Brodsky B; Berman HM J Mol Biol; 2006 Sep; 362(2):298-311. PubMed ID: 16919298 [TBL] [Abstract][Full Text] [Related]
33. Different effects of 4-hydroxyproline and 4-fluoroproline on the stability of collagen triple helix. Nishi Y; Uchiyama S; Doi M; Nishiuchi Y; Nakazawa T; Ohkubo T; Kobayashi Y Biochemistry; 2005 Apr; 44(16):6034-42. PubMed ID: 15835892 [TBL] [Abstract][Full Text] [Related]
34. Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration. Zuo Y; Yang F; Wolke JG; Li Y; Jansen JA Acta Biomater; 2010 Apr; 6(4):1238-47. PubMed ID: 19861181 [TBL] [Abstract][Full Text] [Related]
35. The crystal and molecular structure of a collagen-like peptide with a biologically relevant sequence. Kramer RZ; Bella J; Brodsky B; Berman HM J Mol Biol; 2001 Aug; 311(1):131-47. PubMed ID: 11469863 [TBL] [Abstract][Full Text] [Related]
36. Collagen-like triple helix formation of synthetic (Pro-Pro-Gly)10 analogues: (4(S)-hydroxyprolyl-4(R)-hydroxyprolyl-Gly)10, (4(R)-hydroxyprolyl-4(R)-hydroxyprolyl-Gly)10 and (4(S)-fluoroprolyl-4(R)-fluoroprolyl-Gly)10. Doi M; Nishi Y; Uchiyama S; Nishiuchi Y; Nishio H; Nakazawa T; Ohkubo T; Kobayashi Y J Pept Sci; 2005 Oct; 11(10):609-16. PubMed ID: 15880478 [TBL] [Abstract][Full Text] [Related]
38. Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ. Li J; Chen Y; Yin Y; Yao F; Yao K Biomaterials; 2007 Feb; 28(5):781-90. PubMed ID: 17056107 [TBL] [Abstract][Full Text] [Related]
39. Setting properties and in vitro bioactivity of strontium-enriched gelatin-calcium phosphate bone cements. Panzavolta S; Torricelli P; Sturba L; Bracci B; Giardino R; Bigi A J Biomed Mater Res A; 2008 Mar; 84(4):965-72. PubMed ID: 17647240 [TBL] [Abstract][Full Text] [Related]
40. A new set of molecular mechanics parameters for hydroxyproline and its use in molecular dynamics simulations of collagen-like peptides. Park S; Radmer RJ; Klein TE; Pande VS J Comput Chem; 2005 Nov; 26(15):1612-6. PubMed ID: 16170799 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]