These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 18798650)

  • 1. Microfluidic electroporative flow cytometry for studying single-cell biomechanics.
    Bao N; Zhan Y; Lu C
    Anal Chem; 2008 Oct; 80(20):7714-9. PubMed ID: 18798650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput and real-time study of single cell electroporation using microfluidics: effects of medium osmolarity.
    Wang HY; Lu C
    Biotechnol Bioeng; 2006 Dec; 95(6):1116-25. PubMed ID: 16817188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroporation of mammalian cells in a microfluidic channel with geometric variation.
    Wang HY; Lu C
    Anal Chem; 2006 Jul; 78(14):5158-64. PubMed ID: 16841942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformability-based flow cytometry.
    Lincoln B; Erickson HM; Schinkinger S; Wottawah F; Mitchell D; Ulvick S; Bilby C; Guck J
    Cytometry A; 2004 Jun; 59(2):203-9. PubMed ID: 15170599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage.
    Wang HY; Bhunia AK; Lu C
    Biosens Bioelectron; 2006 Dec; 22(5):582-8. PubMed ID: 16530400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic electroporation for selective release of intracellular molecules at the single-cell level.
    Bao N; Wang J; Lu C
    Electrophoresis; 2008 Jul; 29(14):2939-44. PubMed ID: 18551712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroporation of cells in microfluidic droplets.
    Zhan Y; Wang J; Bao N; Lu C
    Anal Chem; 2009 Mar; 81(5):2027-31. PubMed ID: 19199389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro-electroporation of mesenchymal stem cells with alternating electrical current pulses.
    Ziv R; Steinhardt Y; Pelled G; Gazit D; Rubinsky B
    Biomed Microdevices; 2009 Feb; 11(1):95-101. PubMed ID: 18815886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device.
    Valero A; Post JN; van Nieuwkasteele JW; Ter Braak PM; Kruijer W; van den Berg A
    Lab Chip; 2008 Jan; 8(1):62-7. PubMed ID: 18094762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deformability study of breast cancer cells using microfluidics.
    Hou HW; Li QS; Lee GY; Kumar AP; Ong CN; Lim CT
    Biomed Microdevices; 2009 Jun; 11(3):557-64. PubMed ID: 19082733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous quantitative determination of electroporative molecular uptake and subsequent cell survival using gel microdrops and flow cytometry.
    Gift EA; Weaver JC
    Cytometry; 2000 Apr; 39(4):243-9. PubMed ID: 10738276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell analysis of yeast, mammalian cells, and fungal spores with a microfluidic pressure-driven chip-based system.
    Palková Z; Váchová L; Valer M; Preckel T
    Cytometry A; 2004 Jun; 59(2):246-53. PubMed ID: 15170604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of electroporation-mediated transformation: Staphylococcus carnosus as model organism.
    Löfblom J; Kronqvist N; Uhlén M; Ståhl S; Wernérus H
    J Appl Microbiol; 2007 Mar; 102(3):736-47. PubMed ID: 17309623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microdevice for the isolation and enumeration of cancer cells from blood.
    Tan SJ; Yobas L; Lee GY; Ong CN; Lim CT
    Biomed Microdevices; 2009 Aug; 11(4):883-92. PubMed ID: 19387837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic impedance-based flow cytometry.
    Cheung KC; Di Berardino M; Schade-Kampmann G; Hebeisen M; Pierzchalski A; Bocsi J; Mittag A; Tárnok A
    Cytometry A; 2010 Jul; 77(7):648-66. PubMed ID: 20583276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical and thermal characterization of nanochannels between a cell and a silicon based micro-pore.
    Díaz-Rivera RE; Rubinsky B
    Biomed Microdevices; 2006 Mar; 8(1):25-34. PubMed ID: 16491328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast nanolaser flow device for detecting cancer in single cells.
    Gourley PL; Hendricks JK; McDonald AE; Copeland RG; Barrett KE; Gourley CR; Naviaux RK
    Biomed Microdevices; 2005 Dec; 7(4):331-9. PubMed ID: 16404511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in microfluidic techniques for single-cell biophysical characterization.
    Zheng Y; Nguyen J; Wei Y; Sun Y
    Lab Chip; 2013 Jul; 13(13):2464-83. PubMed ID: 23681312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical characterization of a single cell electroporation biochip with the 2-D scanning vibrating electrode technology.
    Ul Haque A; Zuberi M; Diaz-Rivera RE; Marshall Porterfield D
    Biomed Microdevices; 2009 Dec; 11(6):1239-50. PubMed ID: 19653101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.