These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 18798656)

  • 1. Chemosensors for pyrophosphate.
    Kim SK; Lee DH; Hong JI; Yoon J
    Acc Chem Res; 2009 Jan; 42(1):23-31. PubMed ID: 18798656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polydiacetylene-based colorimetric self-assembled vesicular receptors for biological phosphate ion recognition.
    Jose DA; Stadlbauer S; König B
    Chemistry; 2009 Jul; 15(30):7404-12. PubMed ID: 19551781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aqueous fluorometric and colorimetric sensing of phosphate ions by a fluorescent dinuclear zinc complex.
    Khatua S; Choi SH; Lee J; Kim K; Do Y; Churchill DG
    Inorg Chem; 2009 Apr; 48(7):2993-9. PubMed ID: 19265392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular chemistry approach to the design of a high-resolution sensor array for multianion detection in water.
    Palacios MA; Nishiyabu R; Marquez M; Anzenbacher P
    J Am Chem Soc; 2007 Jun; 129(24):7538-44. PubMed ID: 17530846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphates sensing: two polyamino-phenolic zinc receptors able to discriminate and signal phosphates in water.
    Ambrosi G; Formica M; Fusi V; Giorgi L; Guerri A; Macedi E; Micheloni M; Paoli P; Pontellini R; Rossi P
    Inorg Chem; 2009 Jul; 48(13):5901-12. PubMed ID: 19432470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular recognition and fluorescence sensing of monophosphorylated peptides in aqueous solution by bis(zinc(II)-dipicolylamine)-based artificial receptors.
    Ojida A; Mito-oka Y; Sada K; Hamachi I
    J Am Chem Soc; 2004 Mar; 126(8):2454-63. PubMed ID: 14982454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colorimetric and fluorescent sensing of pyrophosphate in 100% aqueous solution by a system comprised of rhodamine B compound and Al3+ complex.
    Lohani CR; Kim JM; Chung SY; Yoon J; Lee KH
    Analyst; 2010 Aug; 135(8):2079-84. PubMed ID: 20577703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colorimetric sensor for ATP in aqueous solution.
    Jose DA; Mishra S; Ghosh A; Shrivastav A; Mishra SK; Das A
    Org Lett; 2007 May; 9(10):1979-82. PubMed ID: 17429979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrophosphate Recognition and Sensing in Water Using Bis[zinc(II)dipicolylamino]-Functionalized Peptides.
    Jolliffe KA
    Acc Chem Res; 2017 Sep; 50(9):2254-2263. PubMed ID: 28805368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colorimetric sensing of anions in aqueous solution using a charge neutral, cleft-like, amidothiourea receptor: tilting the balance between hydrogen bonding and deprotonation in anion recognition.
    Duke RM; O'Brien JE; McCabe T; Gunnlaugsson T
    Org Biomol Chem; 2008 Nov; 6(22):4089-92. PubMed ID: 18972035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An indirect approach for anion detection: the displacement strategy and its application.
    Lou X; Ou D; Li Q; Li Z
    Chem Commun (Camb); 2012 Sep; 48(68):8462-77. PubMed ID: 22781135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluoride ion recognition by chelating and cationic boranes.
    Hudnall TW; Chiu CW; Gabbaï FP
    Acc Chem Res; 2009 Feb; 42(2):388-97. PubMed ID: 19140747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of dual-emission chemosensors for ratiometric detection of ATP derivatives.
    Ojida A; Miyahara Y; Wongkongkatep J; Tamaru S; Sada K; Hamachi I
    Chem Asian J; 2006 Oct; 1(4):555-63. PubMed ID: 17441093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Species-differentiable sensing of phosphate-containing anions in neutral aqueous solution based on coordinatively unsaturated lanthanide complex probes.
    Li SH; Yuan WT; Zhu CQ; Xu JG
    Anal Biochem; 2004 Aug; 331(2):235-42. PubMed ID: 15265728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrophosphate-induced reorganization of a reporter-receptor assembly via boronate esterification; a new strategy for the turn-on fluorescent detection of multi-phosphates in aqueous solution.
    Nonaka A; Horie S; James TD; Kubo Y
    Org Biomol Chem; 2008 Oct; 6(19):3621-5. PubMed ID: 19082166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conjugated polyelectrolyte-based real-time fluorescence assay for alkaline phosphatase with pyrophosphate as substrate.
    Liu Y; Schanze KS
    Anal Chem; 2008 Nov; 80(22):8605-12. PubMed ID: 18855416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of metal ion in specific recognition of pyrophosphate ion under physiological conditions and hydrolysis of the phosphoester linkage by alkaline phosphatase.
    Das P; Chandar NB; Chourey S; Agarwalla H; Ganguly B; Das A
    Inorg Chem; 2013 Oct; 52(19):11034-41. PubMed ID: 24020456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colorimetric and fluorescent anion sensors: an overview of recent developments in the use of 1,8-naphthalimide-based chemosensors.
    Duke RM; Veale EB; Pfeffer FM; Kruger PE; Gunnlaugsson T
    Chem Soc Rev; 2010 Oct; 39(10):3936-53. PubMed ID: 20818454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colorimetric sensing of pyrophosphate in aqueous media using bis-functionalised silica surfaces.
    Climent E; Casasús R; Marcos MD; Martínez-Máñez R; Sancenón F; Soto J
    Dalton Trans; 2009 Jun; (24):4806-14. PubMed ID: 19513492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zn2+ and pyrophosphate sensing: selective detection in physiological conditions and application in DNA-based estimation of bacterial cell numbers.
    Datta BK; Mukherjee S; Kar C; Ramesh A; Das G
    Anal Chem; 2013 Sep; 85(17):8369-75. PubMed ID: 23905654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.