BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 18798668)

  • 1. Novel biodegradable shape memory material based on partial inclusion complex formation between alpha-cyclodextrin and poly(epsilon-caprolactone).
    Luo H; Liu Y; Yu Z; Zhang S; Li B
    Biomacromolecules; 2008 Oct; 9(10):2573-7. PubMed ID: 18798668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic degradation of supramolecular materials based on partial inclusion complex formation between alpha-cyclodextrin and poly(epsilon-caprolactone).
    Luo H; Meng X; Cheng C; Dong Z; Zhang S; Li B
    J Phys Chem B; 2010 Apr; 114(13):4739-45. PubMed ID: 20235496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inclusion complex formation between alpha-cyclodextrin and biodegradable aliphatic polyesters.
    Shin KM; Dong T; He Y; Taguchi Y; Oishi A; Nishida H; Inoue Y
    Macromol Biosci; 2004 Dec; 4(12):1075-83. PubMed ID: 15586392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants.
    Ajili SH; Ebrahimi NG; Soleimani M
    Acta Biomater; 2009 Jun; 5(5):1519-30. PubMed ID: 19249261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and alpha-cyclodextrin.
    Huh KM; Cho YW; Chung H; Kwon IC; Jeong SY; Ooya T; Lee WK; Sasaki S; Yui N
    Macromol Biosci; 2004 Feb; 4(2):92-9. PubMed ID: 15468199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular Polypseudorotaxanes composed of star-shaped porphyrin-cored poly(epsilon-caprolactone) and alpha-cyclodextrin.
    Dai XH; Dong CM; Fa HB; Yan D; Wei Y
    Biomacromolecules; 2006 Dec; 7(12):3527-33. PubMed ID: 17154484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melting and crystallization behaviors of biodegradable polymers enzymatically coalesced from their cyclodextrin inclusion complexes.
    Wei M; Shuai X; Tonelli AE
    Biomacromolecules; 2003; 4(3):783-92. PubMed ID: 12741799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-induced shape-memory polymers.
    Han XJ; Dong ZQ; Fan MM; Liu Y; li JH; Wang YF; Yuan QJ; Li BJ; Zhang S
    Macromol Rapid Commun; 2012 Jun; 33(12):1055-60. PubMed ID: 22517685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(epsilon-caprolactone) polyurethane and its shape-memory property.
    Ping P; Wang W; Chen X; Jing X
    Biomacromolecules; 2005; 6(2):587-92. PubMed ID: 15762617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the shape memory effects of poly(L-lactide-co-epsilon-caprolactone) biodegradable polymers.
    Lu XL; Sun ZJ; Cai W; Gao ZY
    J Mater Sci Mater Med; 2008 Jan; 19(1):395-9. PubMed ID: 17607526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic chain scission kinetics of poly(epsilon-caprolactone) monolayers.
    Kulkarni A; Reiche J; Kratz K; Kamusewitz H; Sokolov IM; Lendlein A
    Langmuir; 2007 Nov; 23(24):12202-7. PubMed ID: 17949018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradable network elastomeric polyesters from multifunctional aliphatic carboxylic acids and poly(epsilon-caprolactone) diols.
    Nagata M; Kato K; Sakai W; Tsutsumi N
    Macromol Biosci; 2006 May; 6(5):333-9. PubMed ID: 16676379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology of a highly asymmetric double crystallizable poly(epsilon-caprolactone-b-ethylene oxide) block copolymer.
    Li L; Meng F; Zhong Z; Byelov D; de Jeu WH; Feijen J
    J Chem Phys; 2007 Jan; 126(2):024904. PubMed ID: 17228970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable shape-memory block co-polymers for fast self-expandable stents.
    Xue L; Dai S; Li Z
    Biomaterials; 2010 Nov; 31(32):8132-40. PubMed ID: 20723973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A biodegradable shape-memory nanocomposite with excellent magnetism sensitivity.
    Yu X; Zhou S; Zheng X; Guo T; Xiao Y; Song B
    Nanotechnology; 2009 Jun; 20(23):235702. PubMed ID: 19451683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of and coalescence from the inclusion complex of a biodegradable block copolymer and alpha-cyclodextrin. 2: A novel way to regulate the biodegradation behavior of biodegradable block copolymers.
    Shuai X; Wei M; Porbeni FE; Bullions TA; Tonelli AE
    Biomacromolecules; 2002; 3(1):201-7. PubMed ID: 11866574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A facile one-pot construction of supramolecular polymer micelles from alpha-cyclodextrin and poly(epsilon-caprolactone).
    Dong H; Li Y; Cai S; Zhuo R; Zhang X; Liu L
    Angew Chem Int Ed Engl; 2008; 47(30):5573-6. PubMed ID: 18567037
    [No Abstract]   [Full Text] [Related]  

  • 18. Transformation of biodegradable polyesters into cyclic oligomers under continuous flow using an enzyme-packed column.
    Osanai Y; Toshima K; Matsumura S
    Macromol Biosci; 2004 Oct; 4(10):936-42. PubMed ID: 15490437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(ε-caprolactone) nanowebs functionalized with α- and γ-cyclodextrins.
    Narayanan G; Gupta BS; Tonelli AE
    Biomacromolecules; 2014 Nov; 15(11):4122-33. PubMed ID: 25296366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of residual zinc compounds and chain-end structure on thermal degradation of poly(epsilon-caprolactone).
    Abe H; Takahashi N; Kim KJ; Mochizuki M; Doi Y
    Biomacromolecules; 2004; 5(4):1480-8. PubMed ID: 15244468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.