These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 18799304)

  • 1. A novel sugar-probe biosensor for the deadly plant proteinous toxin, ricin.
    Uzawa H; Ohga K; Shinozaki Y; Ohsawa I; Nagatsuka T; Seto Y; Nishida Y
    Biosens Bioelectron; 2008 Dec; 24(4):929-33. PubMed ID: 18799304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hand-held surface plasmon resonance biosensor for the detection of ricin and other biological agents.
    Feltis BN; Sexton BA; Glenn FL; Best MJ; Wilkins M; Davis TJ
    Biosens Bioelectron; 2008 Feb; 23(7):1131-6. PubMed ID: 18155516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed self-assembly of gold binding polypeptide-protein A fusion proteins for development of gold nanoparticle-based SPR immunosensors.
    Ko S; Park TJ; Kim HS; Kim JH; Cho YJ
    Biosens Bioelectron; 2009 Apr; 24(8):2592-7. PubMed ID: 19243930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of lactose against the deadly biological toxin ricin.
    Nagatsuka T; Uzawa H; Ohsawa I; Seto Y; Nishida Y
    ACS Appl Mater Interfaces; 2010 Apr; 2(4):1081-5. PubMed ID: 20369893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Highly sensitive detection technology for biological toxins applying sugar epitopes].
    Uzawa H
    Yakugaku Zasshi; 2009 Jan; 129(1):93-106. PubMed ID: 19122439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloidal Au replacement assay for highly sensitive quantification of low molecular weight analytes by surface plasmon resonance.
    Takae S; Akiyama Y; Yamasaki Y; Nagasaki Y; Kataoka K
    Bioconjug Chem; 2007; 18(4):1241-5. PubMed ID: 17579471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly-(3-hexylthiophene) self-assembled monolayer based cholesterol biosensor using surface plasmon resonance technique.
    Arya SK; Solanki PR; Singh SP; Kaneto K; Pandey MK; Datta M; Malhotra BD
    Biosens Bioelectron; 2007 May; 22(11):2516-24. PubMed ID: 17113279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface plasmon resonance biosensing.
    Piliarik M; Vaisocherová H; Homola J
    Methods Mol Biol; 2009; 503():65-88. PubMed ID: 19151937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroless-plated gold films for sensitive surface plasmon resonance detection of white spot syndrome virus.
    Lei Y; Chen H; Dai H; Zeng Z; Lin Y; Zhou F; Pang D
    Biosens Bioelectron; 2008 Feb; 23(7):1200-7. PubMed ID: 18023170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasensitive detection of testosterone using conjugate linker technology in a nanoparticle-enhanced surface plasmon resonance biosensor.
    Mitchell JS; Lowe TE
    Biosens Bioelectron; 2009 Mar; 24(7):2177-83. PubMed ID: 19117747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Au-NPs enhanced SPR biosensor based on hairpin DNA without the effect of nonspecific adsorption.
    Luan Q; Zhou K; Tan H; Yang D; Yao X
    Biosens Bioelectron; 2011 Jan; 26(5):2473-7. PubMed ID: 21094596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localized surface plasmon resonance biosensor integrated with microfluidic chip.
    Huang C; Bonroy K; Reekmans G; Laureyn W; Verhaegen K; De Vlaminck I; Lagae L; Borghs G
    Biomed Microdevices; 2009 Aug; 11(4):893-901. PubMed ID: 19353272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon resonance protein sensor using Vroman effect.
    Choi S; Yang Y; Chae J
    Biosens Bioelectron; 2008 Dec; 24(4):899-905. PubMed ID: 18768307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance.
    Lin TJ; Chung MF
    Biosens Bioelectron; 2009 Jan; 24(5):1213-8. PubMed ID: 18718753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel label-free multi-throughput optical biosensor based on localized surface plasmon resonance.
    Huang H; He C; Zeng Y; Xia X; Yu X; Yi P; Chen Z
    Biosens Bioelectron; 2009 Mar; 24(7):2255-9. PubMed ID: 19042120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced resonance light scattering based on biocatalytic growth of gold nanoparticles for biosensors design.
    Shang L; Chen H; Deng L; Dong S
    Biosens Bioelectron; 2008 Feb; 23(7):1180-4. PubMed ID: 18068347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon resonance immunosensor for early diagnosis of Asian rust on soybean leaves.
    Mendes RK; Carvalhal RF; Stach-Machado DR; Kubota LT
    Biosens Bioelectron; 2009 Apr; 24(8):2483-7. PubMed ID: 19200709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The application of neoglycopeptides in the development of sensitive surface plasmon resonance-based biosensors.
    Maljaars CE; de Souza AC; Halkes KM; Upton PJ; Reeman SM; André S; Gabius HJ; McDonnell MB; Kamerling JP
    Biosens Bioelectron; 2008 Sep; 24(1):60-5. PubMed ID: 18455919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput SPR sensor for food safety.
    Piliarik M; Párová L; Homola J
    Biosens Bioelectron; 2009 Jan; 24(5):1399-404. PubMed ID: 18809310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface plasmon resonance immunosensor using self-assembled protein G for the detection of Salmonella paratyphi.
    Oh BK; Lee W; Kim YK; Lee WH; Choi JW
    J Biotechnol; 2004 Jul; 111(1):1-8. PubMed ID: 15196764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.