BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 18799320)

  • 1. Bifurcating fragmentation behavior of gas-phase tryptic peptide dications in collisional activation.
    Savitski MM; Fälth M; Fung YM; Adams CM; Zubarev RA
    J Am Soc Mass Spectrom; 2008 Dec; 19(12):1755-63. PubMed ID: 18799320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opposite Electron-Transfer Dissociation and Higher-Energy Collisional Dissociation Fragmentation Characteristics of Proteolytic K/R(X)
    Tsiatsiani L; Giansanti P; Scheltema RA; van den Toorn H; Overall CM; Altelaar AF; Heck AJ
    J Proteome Res; 2017 Feb; 16(2):852-861. PubMed ID: 28111955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cis-trans signatures of proline-containing tryptic peptides in the gas phase.
    Counterman AE; Clemmer DE
    Anal Chem; 2002 May; 74(9):1946-51. PubMed ID: 12033290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbonyl charge solvation patterns may relate to fragmentation classes in collision-activated dissociation.
    Yang H; Good DM; van der Spoel D; Zubarev RA
    J Am Soc Mass Spectrom; 2012 Aug; 23(8):1319-25. PubMed ID: 22689324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size Dependent Fragmentation Chemistry of Short Doubly Protonated Tryptic Peptides.
    Guan S; Bythell BJ
    J Am Soc Mass Spectrom; 2021 Apr; 32(4):1020-1032. PubMed ID: 33779179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the electron capture dissociation fragmentation behavior of doubly and triply protonated peptides from trypsin, Glu-C, and chymotrypsin digestion.
    Kalli A; Håkansson K
    J Proteome Res; 2008 Jul; 7(7):2834-44. PubMed ID: 18549259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mining a tandem mass spectrometry database to determine the trends and global factors influencing peptide fragmentation.
    Kapp EA; Schütz F; Reid GE; Eddes JS; Moritz RL; O'Hair RA; Speed TP; Simpson RJ
    Anal Chem; 2003 Nov; 75(22):6251-64. PubMed ID: 14616009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the identity of Xaa on the fragmentation modes of doubly-protonated Ala-Ala-Xaa-Ala-Ala-Ala-Arg.
    Harrison AG
    J Am Soc Mass Spectrom; 2011 May; 22(5):906-11. PubMed ID: 21472525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge states of y ions in the collision-induced dissociation of doubly charged tryptic peptide ions.
    Neta P; Stein SE
    J Am Soc Mass Spectrom; 2011 May; 22(5):898-905. PubMed ID: 21472524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared spectroscopy of fragments from doubly protonated tryptic peptides.
    Bythell BJ; Erlekam U; Paizs B; Maître P
    Chemphyschem; 2009 Apr; 10(6):883-5. PubMed ID: 19253930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for structural variants of a- and b-type peptide fragment ions using combined ion mobility/mass spectrometry.
    Riba-Garcia I; Giles K; Bateman RH; Gaskell SJ
    J Am Soc Mass Spectrom; 2008 Apr; 19(4):609-13. PubMed ID: 18313327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining Linear Free Energy Relationships in Peptide Fragmentation Using Derivatization and Targeted Mass Spectrometry.
    Shen Y; Nemati R; Wang L; Yao X
    Anal Chem; 2018 Feb; 90(3):1587-1594. PubMed ID: 29281784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of chemical modifications on peptide fragmentation behavior upon electron transfer induced dissociation.
    Hennrich ML; Boersema PJ; van den Toorn H; Mischerikow N; Heck AJ; Mohammed S
    Anal Chem; 2009 Sep; 81(18):7814-22. PubMed ID: 19689115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical and mechanistic approaches to understanding the gas-phase fragmentation behavior of methionine sulfoxide containing peptides.
    Reid GE; Roberts KD; Kapp EA; Simpson RI
    J Proteome Res; 2004; 3(4):751-9. PubMed ID: 15359728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tryptic y(++) fragment ion distributions are guided by Coulombic repulsion.
    Irikura KK; Merle JK; Simón-Manso Y
    J Am Soc Mass Spectrom; 2012 Mar; 23(3):483-8. PubMed ID: 22183957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photodissociation of conformer-selected ubiquitin ions reveals site-specific cis/trans isomerization of proline peptide bonds.
    Warnke S; Baldauf C; Bowers MT; Pagel K; von Helden G
    J Am Chem Soc; 2014 Jul; 136(29):10308-14. PubMed ID: 25007274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What is the structure of b(2) ions generated from doubly protonated tryptic peptides?
    Bythell BJ; Somogyi A; Paizs B
    J Am Soc Mass Spectrom; 2009 Apr; 20(4):618-24. PubMed ID: 19109036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-covalent interactions of alkali metal cations with singly charged tryptic peptides.
    Rožman M; Gaskell SJ
    J Mass Spectrom; 2010 Dec; 45(12):1409-15. PubMed ID: 21031360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons.
    Bythell BJ; Suhai S; Somogyi A; Paizs B
    J Am Chem Soc; 2009 Oct; 131(39):14057-65. PubMed ID: 19746933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective collision-induced fragmentation of ortho-hydroxybenzyl-aminated lysyl-containing tryptic peptides.
    Simon ES; Papoulias PG; Andrews PC
    Rapid Commun Mass Spectrom; 2013 Jul; 27(14):1619-30. PubMed ID: 23765610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.