These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 18799392)

  • 1. Brain-computer interfaces based on visual evoked potentials.
    Wang Y; Gao X; Hong B; Jia C; Gao S
    IEEE Eng Med Biol Mag; 2008; 27(5):64-71. PubMed ID: 18799392
    [No Abstract]   [Full Text] [Related]  

  • 2. A practical VEP-based brain-computer interface.
    Wang Y; Wang R; Gao X; Hong B; Gao S
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):234-9. PubMed ID: 16792302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components.
    Müller-Putz GR; Scherer R; Brauneis C; Pfurtscheller G
    J Neural Eng; 2005 Dec; 2(4):123-30. PubMed ID: 16317236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C; Allison BZ; Altstätter C; Neuper C
    J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of fronto-central phase coupling with sensorimotor rhythm modulation.
    Chung YG; Kang JH; Kim SP
    Neural Netw; 2012 Dec; 36():46-50. PubMed ID: 23037775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel multiple frequency stimulation method for steady state VEP based brain computer interfaces.
    Srihari Mukesh TM; Jaganathan V; Reddy MR
    Physiol Meas; 2006 Jan; 27(1):61-71. PubMed ID: 16365511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual spatial attention control in an independent brain-computer interface.
    Kelly SP; Lalor EC; Finucane C; McDarby G; Reilly RB
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1588-96. PubMed ID: 16189972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An SSVEP-based brain-computer interface for the control of functional electrical stimulation.
    Gollee H; Volosyak I; McLachlan AJ; Hunt KJ; Gräser A
    IEEE Trans Biomed Eng; 2010 Aug; 57(8):1847-55. PubMed ID: 20176528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication.
    Kelly SP; Lalor EC; Reilly RB; Foxe JJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):172-8. PubMed ID: 16003896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high-speed BCI based on code modulation VEP.
    Bin G; Gao X; Wang Y; Li Y; Hong B; Gao S
    J Neural Eng; 2011 Apr; 8(2):025015. PubMed ID: 21436527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple channel detection of steady-state visual evoked potentials for brain-computer interfaces.
    Friman O; Volosyak I; Gräser A
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):742-50. PubMed ID: 17405382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulator selection in SSVEP-based BCI.
    Wu Z; Lai Y; Xia Y; Wu D; Yao D
    Med Eng Phys; 2008 Oct; 30(8):1079-88. PubMed ID: 18316226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain activity-based image classification from rapid serial visual presentation.
    Bigdely-Shamlo N; Vankov A; Ramirez RR; Makeig S
    IEEE Trans Neural Syst Rehabil Eng; 2008 Oct; 16(5):432-41. PubMed ID: 18990647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward self-paced brain-computer communication: navigation through virtual worlds.
    Scherer R; Lee F; Schlogl A; Leeb R; Bischof H; Pfurtscheller G
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):675-82. PubMed ID: 18270004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an SSVEP-based BCI spelling system adopting a QWERTY-style LED keyboard.
    Hwang HJ; Lim JH; Jung YJ; Choi H; Lee SW; Im CH
    J Neurosci Methods; 2012 Jun; 208(1):59-65. PubMed ID: 22580222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial filters to detect steady-state visual evoked potentials elicited by high frequency stimulation: BCI application.
    Molina GG; Mihajlovic V
    Biomed Tech (Berl); 2010 Jun; 55(3):173-82. PubMed ID: 20415628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain interface research for asynchronous control applications.
    Borisoff JF; Mason SG; Birch GE
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):160-4. PubMed ID: 16792283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DASHER--an efficient writing system for brain-computer interfaces?
    Wills SA; MacKay DJ
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):244-6. PubMed ID: 16792304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of covariate shift adaptation techniques in brain-computer interfaces.
    Li Y; Kambara H; Koike Y; Sugiyama M
    IEEE Trans Biomed Eng; 2010 Jun; 57(6):1318-24. PubMed ID: 20172795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.