These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 18799604)

  • 1. Responses to interaural time delay in human cortex.
    von Kriegstein K; Griffiths TD; Thompson SK; McAlpine D
    J Neurophysiol; 2008 Nov; 100(5):2712-8. PubMed ID: 18799604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The neural representation of interaural time differences in gerbils is transformed from midbrain to cortex.
    Belliveau LA; Lyamzin DR; Lesica NA
    J Neurosci; 2014 Dec; 34(50):16796-808. PubMed ID: 25505332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive.
    Joris PX
    J Neurophysiol; 1996 Oct; 76(4):2137-56. PubMed ID: 8899590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for opponent-channel coding of interaural time differences in human auditory cortex.
    Magezi DA; Krumbholz K
    J Neurophysiol; 2010 Oct; 104(4):1997-2007. PubMed ID: 20702739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal sensitivity to interaural time differences in the sound envelope in the auditory cortex of the pallid bat.
    Lohuis TD; Fuzessery ZM
    Hear Res; 2000 May; 143(1-2):43-57. PubMed ID: 10771183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Representation of interaural time delay in the human auditory midbrain.
    Thompson SK; von Kriegstein K; Deane-Pratt A; Marquardt T; Deichmann R; Griffiths TD; McAlpine D
    Nat Neurosci; 2006 Sep; 9(9):1096-8. PubMed ID: 16921369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processing of binaural spatial information in human auditory cortex: neuromagnetic responses to interaural timing and level differences.
    Johnson BW; Hautus MJ
    Neuropsychologia; 2010 Jul; 48(9):2610-9. PubMed ID: 20466010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils.
    Vollmer M
    J Neurosci; 2018 Aug; 38(31):6949-6966. PubMed ID: 29959238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation from a pure time delay to a mixed time and phase delay representation in the auditory forebrain pathway.
    Vonderschen K; Wagner H
    J Neurosci; 2012 Apr; 32(17):5911-23. PubMed ID: 22539852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The neural representation of an auditory spatial cue in the primate cortex.
    Undurraga JA; Luke R; Van Yper L; Monaghan JJM; McAlpine D
    Curr Biol; 2024 May; 34(10):2162-2174.e5. PubMed ID: 38718798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural sensitivity to interaural time differences: beyond the Jeffress model.
    Fitzpatrick DC; Kuwada S; Batra R
    J Neurosci; 2000 Feb; 20(4):1605-15. PubMed ID: 10662850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical Representation of Interaural Time Difference Is Impaired by Deafness in Development: Evidence from Children with Early Long-term Access to Sound through Bilateral Cochlear Implants Provided Simultaneously.
    Easwar V; Yamazaki H; Deighton M; Papsin B; Gordon K
    J Neurosci; 2017 Mar; 37(9):2349-2361. PubMed ID: 28123078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-frequency neurons in the inferior colliculus that are sensitive to interaural delays of amplitude-modulated tones: evidence for dual binaural influences.
    Batra R; Kuwada S; Stanford TR
    J Neurophysiol; 1993 Jul; 70(1):64-80. PubMed ID: 8395589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory evoked fields to variations of interaural time delay.
    Soeta Y; Nakagawa S; Tonoike M
    Neurosci Lett; 2005 Aug; 383(3):311-6. PubMed ID: 15955427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reassessing mechanisms of low-frequency sound localisation.
    Palmer AR
    Curr Opin Neurobiol; 2004 Aug; 14(4):457-60. PubMed ID: 15302352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced temporal processing in older, normal-hearing listeners evident from electrophysiological responses to shifts in interaural time difference.
    Ozmeral EJ; Eddins DA; Eddins AC
    J Neurophysiol; 2016 Dec; 116(6):2720-2729. PubMed ID: 27683889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A common periodic representation of interaural time differences in mammalian cortex.
    Salminen NH; Jones SJ; Christianson GB; Marquardt T; McAlpine D
    Neuroimage; 2018 Feb; 167():95-103. PubMed ID: 29122721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The spatio-temporal brain dynamics of processing and integrating sound localization cues in humans.
    Tardif E; Murray MM; Meylan R; Spierer L; Clarke S
    Brain Res; 2006 May; 1092(1):161-76. PubMed ID: 16684510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow Temporal Integration Enables Robust Neural Coding and Perception of a Cue to Sound Source Location.
    Brown AD; Tollin DJ
    J Neurosci; 2016 Sep; 36(38):9908-21. PubMed ID: 27656028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sound-intensity-dependent compensation for the small interaural time difference cue for sound source localization.
    Nishino E; Yamada R; Kuba H; Hioki H; Furuta T; Kaneko T; Ohmori H
    J Neurosci; 2008 Jul; 28(28):7153-64. PubMed ID: 18614685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.