These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 18799661)
1. Subclade of flavin-monooxygenases involved in aliphatic glucosinolate biosynthesis. Li J; Hansen BG; Ober JA; Kliebenstein DJ; Halkier BA Plant Physiol; 2008 Nov; 148(3):1721-33. PubMed ID: 18799661 [TBL] [Abstract][Full Text] [Related]
2. Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. Hansen BG; Kliebenstein DJ; Halkier BA Plant J; 2007 Jun; 50(5):902-10. PubMed ID: 17461789 [TBL] [Abstract][Full Text] [Related]
3. Cellular and subcellular localization of flavin-monooxygenases involved in glucosinolate biosynthesis. Li J; Kristiansen KA; Hansen BG; Halkier BA J Exp Bot; 2011 Jan; 62(3):1337-46. PubMed ID: 21078824 [TBL] [Abstract][Full Text] [Related]
4. Abscisic acid-mediated induction of FLAVIN-CONTAINING MONOOXYGENASE 2 leads to reduced accumulation of methylthioalkyl glucosinolates in Arabidopsis thaliana. Li Y; Li R; Sawada Y; Boerzhijin S; Kuwahara A; Sato M; Hirai MY Plant Sci; 2021 Feb; 303():110764. PubMed ID: 33487349 [TBL] [Abstract][Full Text] [Related]
5. Two Novel Flavin-Containing Monooxygenases Involved in Biosynthesis of Aliphatic Glucosinolates. Kong W; Li J; Yu Q; Cang W; Xu R; Wang Y; Ji W Front Plant Sci; 2016; 7():1292. PubMed ID: 27621741 [TBL] [Abstract][Full Text] [Related]
6. Expression profiles of glucosinolate biosynthetic genes in turnip (Brassica rapa var. rapa) at different developmental stages and effect of transformed flavin-containing monooxygenase genes on hairy root glucosinolate content. Yang Y; Hu Y; Yue Y; Pu Y; Yin X; Duan Y; Huang A; Yang Y; Yang Y J Sci Food Agric; 2020 Feb; 100(3):1064-1071. PubMed ID: 31713870 [TBL] [Abstract][Full Text] [Related]
7. Novel bioresources for studies of Brassica oleracea: identification of a kale MYB transcription factor responsible for glucosinolate production. Araki R; Hasumi A; Nishizawa OI; Sasaki K; Kuwahara A; Sawada Y; Totoki Y; Toyoda A; Sakaki Y; Li Y; Saito K; Ogawa T; Hirai MY Plant Biotechnol J; 2013 Oct; 11(8):1017-27. PubMed ID: 23910994 [TBL] [Abstract][Full Text] [Related]
10. A Comprehensive Gene Inventory for Glucosinolate Biosynthetic Pathway in Harun S; Abdullah-Zawawi MR; Goh HH; Mohamed-Hussein ZA J Agric Food Chem; 2020 Jul; 68(28):7281-7297. PubMed ID: 32551569 [TBL] [Abstract][Full Text] [Related]
11. Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Kliebenstein DJ; Lambrix VM; Reichelt M; Gershenzon J; Mitchell-Olds T Plant Cell; 2001 Mar; 13(3):681-93. PubMed ID: 11251105 [TBL] [Abstract][Full Text] [Related]
12. CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Naur P; Petersen BL; Mikkelsen MD; Bak S; Rasmussen H; Olsen CE; Halkier BA Plant Physiol; 2003 Sep; 133(1):63-72. PubMed ID: 12970475 [TBL] [Abstract][Full Text] [Related]
13. Glucosinolate and amino acid biosynthesis in Arabidopsis. Field B; Cardon G; Traka M; Botterman J; Vancanneyt G; Mithen R Plant Physiol; 2004 Jun; 135(2):828-39. PubMed ID: 15155874 [TBL] [Abstract][Full Text] [Related]
14. CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Chen S; Glawischnig E; Jørgensen K; Naur P; Jørgensen B; Olsen CE; Hansen CH; Rasmussen H; Pickett JA; Halkier BA Plant J; 2003 Mar; 33(5):923-37. PubMed ID: 12609033 [TBL] [Abstract][Full Text] [Related]
16. The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators. Malitsky S; Blum E; Less H; Venger I; Elbaz M; Morin S; Eshed Y; Aharoni A Plant Physiol; 2008 Dec; 148(4):2021-49. PubMed ID: 18829985 [TBL] [Abstract][Full Text] [Related]
17. Flavin-containing monooxygenases FMO Zhao H; Li D; Liu Y; Zhang T; Zhao X; Su H; Li J Physiol Plant; 2024; 176(2):e14287. PubMed ID: 38606719 [TBL] [Abstract][Full Text] [Related]
18. Comparison of glucosinolate diversity in the crucifer tribe Cardamineae and the remaining order Brassicales highlights repetitive evolutionary loss and gain of biosynthetic steps. Agerbirk N; Hansen CC; Kiefer C; Hauser TP; Ørgaard M; Asmussen Lange CB; Cipollini D; Koch MA Phytochemistry; 2021 May; 185():112668. PubMed ID: 33743499 [TBL] [Abstract][Full Text] [Related]
19. Flavin-dependent monooxygenases as a detoxification mechanism in insects: new insights from the arctiids (lepidoptera). Sehlmeyer S; Wang L; Langel D; Heckel DG; Mohagheghi H; Petschenka G; Ober D PLoS One; 2010 May; 5(5):e10435. PubMed ID: 20454663 [TBL] [Abstract][Full Text] [Related]