These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 18799712)
1. Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis. Frommolt R; Werner S; Paulsen H; Goss R; Wilhelm C; Zauner S; Maier UG; Grossman AR; Bhattacharya D; Lohr M Mol Biol Evol; 2008 Dec; 25(12):2653-67. PubMed ID: 18799712 [TBL] [Abstract][Full Text] [Related]
2. Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates. Hackett JD; Yoon HS; Li S; Reyes-Prieto A; Rümmele SE; Bhattacharya D Mol Biol Evol; 2007 Aug; 24(8):1702-13. PubMed ID: 17488740 [TBL] [Abstract][Full Text] [Related]
3. Chromera velia, endosymbioses and the rhodoplex hypothesis--plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages). Petersen J; Ludewig AK; Michael V; Bunk B; Jarek M; Baurain D; Brinkmann H Genome Biol Evol; 2014 Mar; 6(3):666-84. PubMed ID: 24572015 [TBL] [Abstract][Full Text] [Related]
4. The endosymbiotic origin, diversification and fate of plastids. Keeling PJ Philos Trans R Soc Lond B Biol Sci; 2010 Mar; 365(1541):729-48. PubMed ID: 20124341 [TBL] [Abstract][Full Text] [Related]
5. Multiple genes of apparent algal origin suggest ciliates may once have been photosynthetic. Reyes-Prieto A; Moustafa A; Bhattacharya D Curr Biol; 2008 Jul; 18(13):956-62. PubMed ID: 18595706 [TBL] [Abstract][Full Text] [Related]
6. A "green" phosphoribulokinase in complex algae with red plastids: evidence for a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts, and dinoflagellates. Petersen J; Teich R; Brinkmann H; Cerff R J Mol Evol; 2006 Feb; 62(2):143-57. PubMed ID: 16474987 [TBL] [Abstract][Full Text] [Related]
7. ERAD components in organisms with complex red plastids suggest recruitment of a preexisting protein transport pathway for the periplastid membrane. Felsner G; Sommer MS; Gruenheit N; Hempel F; Moog D; Zauner S; Martin W; Maier UG Genome Biol Evol; 2011; 3():140-50. PubMed ID: 21081314 [TBL] [Abstract][Full Text] [Related]
8. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Cavalier-Smith T Philos Trans R Soc Lond B Biol Sci; 2003 Jan; 358(1429):109-33; discussion 133-4. PubMed ID: 12594921 [TBL] [Abstract][Full Text] [Related]
9. Chlorophyll c-containing plastid relationships based on analyses of a multigene data set with all four chromalveolate lineages. Bachvaroff TR; Sanchez Puerta MV; Delwiche CF Mol Biol Evol; 2005 Sep; 22(9):1772-82. PubMed ID: 15917498 [TBL] [Abstract][Full Text] [Related]
10. Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Moustafa A; Beszteri B; Maier UG; Bowler C; Valentin K; Bhattacharya D Science; 2009 Jun; 324(5935):1724-6. PubMed ID: 19556510 [TBL] [Abstract][Full Text] [Related]
11. Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids. Le Corguillé G; Pearson G; Valente M; Viegas C; Gschloessl B; Corre E; Bailly X; Peters AF; Jubin C; Vacherie B; Cock JM; Leblanc C BMC Evol Biol; 2009 Oct; 9():253. PubMed ID: 19835607 [TBL] [Abstract][Full Text] [Related]
12. Origin and distribution of Calvin cycle fructose and sedoheptulose bisphosphatases in plantae and complex algae: a single secondary origin of complex red plastids and subsequent propagation via tertiary endosymbioses. Teich R; Zauner S; Baurain D; Brinkmann H; Petersen J Protist; 2007 Jul; 158(3):263-76. PubMed ID: 17368985 [TBL] [Abstract][Full Text] [Related]
13. Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Baurain D; Brinkmann H; Petersen J; Rodríguez-Ezpeleta N; Stechmann A; Demoulin V; Roger AJ; Burger G; Lang BF; Philippe H Mol Biol Evol; 2010 Jul; 27(7):1698-709. PubMed ID: 20194427 [TBL] [Abstract][Full Text] [Related]
14. A New Model and Dating for the Evolution of Complex Plastids of Red Alga Origin. Pietluch F; Mackiewicz P; Ludwig K; Gagat P Genome Biol Evol; 2024 Sep; 16(9):. PubMed ID: 39240751 [TBL] [Abstract][Full Text] [Related]
15. Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates. Li S; Nosenko T; Hackett JD; Bhattacharya D Mol Biol Evol; 2006 Mar; 23(3):663-74. PubMed ID: 16357039 [TBL] [Abstract][Full Text] [Related]
16. After the primary endosymbiosis: an update on the chromalveolate hypothesis and the origins of algae with Chl c. Green BR Photosynth Res; 2011 Jan; 107(1):103-15. PubMed ID: 20676772 [TBL] [Abstract][Full Text] [Related]
17. PHYLOGENOMICS AND SECONDARY PLASTIDS: A LOOK BACK AND A LOOK AHEAD(1). Braun EL; Phillips N J Phycol; 2008 Feb; 44(1):2-6. PubMed ID: 27041031 [TBL] [Abstract][Full Text] [Related]
18. Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Harper JT; Keeling PJ Mol Biol Evol; 2003 Oct; 20(10):1730-5. PubMed ID: 12885964 [TBL] [Abstract][Full Text] [Related]
19. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids. Maruyama S; Suzaki T; Weber AP; Archibald JM; Nozaki H BMC Evol Biol; 2011 Apr; 11():105. PubMed ID: 21501489 [TBL] [Abstract][Full Text] [Related]
20. A hypothesis for the evolution of nuclear-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase genes in "chromalveolate" members. Takishita K; Yamaguchi H; Maruyama T; Inagaki Y PLoS One; 2009; 4(3):e4737. PubMed ID: 19270733 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]