These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 18799748)
1. Determination of hierarchical relationship of Src and Rac at subcellular locations with FRET biosensors. Ouyang M; Sun J; Chien S; Wang Y Proc Natl Acad Sci U S A; 2008 Sep; 105(38):14353-8. PubMed ID: 18799748 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous visualization of protumorigenic Src and MT1-MMP activities with fluorescence resonance energy transfer. Ouyang M; Huang H; Shaner NC; Remacle AG; Shiryaev SA; Strongin AY; Tsien RY; Wang Y Cancer Res; 2010 Mar; 70(6):2204-12. PubMed ID: 20197470 [TBL] [Abstract][Full Text] [Related]
3. Rapid activation of Rac GTPase in living cells by force is independent of Src. Poh YC; Na S; Chowdhury F; Ouyang M; Wang Y; Wang N PLoS One; 2009 Nov; 4(11):e7886. PubMed ID: 19924282 [TBL] [Abstract][Full Text] [Related]
4. Booster, a Red-Shifted Genetically Encoded Förster Resonance Energy Transfer (FRET) Biosensor Compatible with Cyan Fluorescent Protein/Yellow Fluorescent Protein-Based FRET Biosensors and Blue Light-Responsive Optogenetic Tools. Watabe T; Terai K; Sumiyama K; Matsuda M ACS Sens; 2020 Mar; 5(3):719-730. PubMed ID: 32101394 [TBL] [Abstract][Full Text] [Related]
5. Biosensors of DsRed as FRET partner with CFP or GFP for quantitatively imaging induced activation of Rac, Cdc42 in living cells. Liu R; Ren D; Liu Y; Deng Y; Sun B; Zhang Q; Guo X Mol Imaging Biol; 2011 Jun; 13(3):424-431. PubMed ID: 20683671 [TBL] [Abstract][Full Text] [Related]
6. Quantitative analysis of recombination between YFP and CFP genes of FRET biosensors introduced by lentiviral or retroviral gene transfer. Komatsubara AT; Matsuda M; Aoki K Sci Rep; 2015 Aug; 5():13283. PubMed ID: 26290434 [TBL] [Abstract][Full Text] [Related]
7. Homo-FRET Based Biosensors and Their Application to Multiplexed Imaging of Signalling Events in Live Cells. Warren SC; Margineanu A; Katan M; Dunsby C; French PM Int J Mol Sci; 2015 Jun; 16(7):14695-716. PubMed ID: 26133241 [TBL] [Abstract][Full Text] [Related]
8. Genetically encoded fluorescent biosensors for live-cell imaging of MT1-MMP protease activity. Ouyang M; Lu S; Wang Y Methods Mol Biol; 2014; 1071():163-74. PubMed ID: 24052388 [TBL] [Abstract][Full Text] [Related]
9. Electroporation-delivered fluorescent protein biosensors for probing molecular activities in cells without genetic encoding. Sun C; Ouyang M; Cao Z; Ma S; Alqublan H; Sriranganathan N; Wang Y; Lu C Chem Commun (Camb); 2014 Oct; 50(78):11536-9. PubMed ID: 25133322 [TBL] [Abstract][Full Text] [Related]
10. Development of FRET Biosensor to Characterize CSK Subcellular Regulation. Ouyang M; Xing Y; Zhang S; Li L; Pan Y; Deng L Biosensors (Basel); 2024 Apr; 14(4):. PubMed ID: 38667199 [TBL] [Abstract][Full Text] [Related]
11. Monitoring the dynamics of Src activity in response to anti-invasive dasatinib treatment at a subcellular level using dual intravital imaging. Nobis M; McGhee EJ; Herrmann D; Magenau A; Morton JP; Anderson KI; Timpson P Cell Adh Migr; 2014; 8(5):478-86. PubMed ID: 25482620 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of Csk-mediated down-regulation of Src family tyrosine kinases in epidermal growth factor signaling. Matsuoka H; Nada S; Okada M J Biol Chem; 2004 Feb; 279(7):5975-83. PubMed ID: 14613929 [TBL] [Abstract][Full Text] [Related]
13. Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors. Aoki K; Matsuda M Nat Protoc; 2009; 4(11):1623-31. PubMed ID: 19834477 [TBL] [Abstract][Full Text] [Related]
15. Monitoring of dual bio-molecular events using FRET biosensors based on mTagBFP/sfGFP and mVenus/mKOκ fluorescent protein pairs. Su T; Pan S; Luo Q; Zhang Z Biosens Bioelectron; 2013 Aug; 46():97-101. PubMed ID: 23517824 [TBL] [Abstract][Full Text] [Related]
16. Development of an optimized backbone of FRET biosensors for kinases and GTPases. Komatsu N; Aoki K; Yamada M; Yukinaga H; Fujita Y; Kamioka Y; Matsuda M Mol Biol Cell; 2011 Dec; 22(23):4647-56. PubMed ID: 21976697 [TBL] [Abstract][Full Text] [Related]
17. Visualization of polarized membrane type 1 matrix metalloproteinase activity in live cells by fluorescence resonance energy transfer imaging. Ouyang M; Lu S; Li XY; Xu J; Seong J; Giepmans BN; Shyy JY; Weiss SJ; Wang Y J Biol Chem; 2008 Jun; 283(25):17740-8. PubMed ID: 18441011 [TBL] [Abstract][Full Text] [Related]
18. A genetically encoded Förster resonance energy transfer biosensor for two-photon excitation microscopy. Kumagai Y; Kamioka Y; Yagi S; Matsuda M; Kiyokawa E Anal Biochem; 2011 Jun; 413(2):192-9. PubMed ID: 21352796 [TBL] [Abstract][Full Text] [Related]
19. Receptor-regulated dynamic interaction between endothelial nitric oxide synthase and calmodulin revealed by fluorescence resonance energy transfer in living cells. Jobin CM; Chen H; Lin AJ; Yacono PW; Igarashi J; Michel T; Golan DE Biochemistry; 2003 Oct; 42(40):11716-25. PubMed ID: 14529282 [TBL] [Abstract][Full Text] [Related]
20. Single-color, ratiometric biosensors for detecting signaling activities in live cells. Ross BL; Tenner B; Markwardt ML; Zviman A; Shi G; Kerr JP; Snell NE; McFarland JJ; Mauban JR; Ward CW; Rizzo MA; Zhang J Elife; 2018 Jul; 7():. PubMed ID: 29968564 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]