BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 18800378)

  • 1. Opsins and cell fate in the Drosophila Bolwig organ: tricky lessons in homology inference.
    Friedrich M
    Bioessays; 2008 Oct; 30(10):980-93. PubMed ID: 18800378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular evolution of the Drosophila retinome: exceptional gene gain in the higher Diptera.
    Bao R; Friedrich M
    Mol Biol Evol; 2009 Jun; 26(6):1273-87. PubMed ID: 19252076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental evolution of the insect retina: insights from standardized numbering of homologous photoreceptors.
    Friedrich M; Wood EJ; Wu M
    J Exp Zool B Mol Dev Evol; 2011 Nov; 316(7):484-99. PubMed ID: 21796775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene regulatory networks reused to build novel traits: co-option of an eye-related gene regulatory network in eye-like organs and red wing patches on insect wings is suggested by optix expression.
    Monteiro A
    Bioessays; 2012 Mar; 34(3):181-6. PubMed ID: 22223407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enforcing biphasic eye development in a directly developing insect by transient knockdown of single eye selector genes.
    Dong Y; Friedrich M
    J Exp Zool B Mol Dev Evol; 2010 Mar; 314(2):104-14. PubMed ID: 19637278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic and developmental mechanisms underlying the formation of the Drosophila compound eye.
    Tsachaki M; Sprecher SG
    Dev Dyn; 2012 Jan; 241(1):40-56. PubMed ID: 21932322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lessons about terminal differentiation from the specification of color-detecting photoreceptors in the Drosophila retina.
    Johnston RJ
    Ann N Y Acad Sci; 2013 Jul; 1293():33-44. PubMed ID: 23782311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique Temporal Expression of Triplicated Long-Wavelength Opsins in Developing Butterfly Eyes.
    Arikawa K; Iwanaga T; Wakakuwa M; Kinoshita M
    Front Neural Circuits; 2017; 11():96. PubMed ID: 29238294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of cell fates in the R7 equivalence group of the Drosophila eye by the concerted regulation of D-Pax2 and TTK88.
    Shi Y; Noll M
    Dev Biol; 2009 Jul; 331(1):68-77. PubMed ID: 19406115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diel changes in the expression of long wavelength-sensitive and ultraviolet-sensitive opsin genes in the Japanese firefly, Luciola cruciata.
    Oba Y; Kainuma T
    Gene; 2009 May; 436(1-2):66-70. PubMed ID: 19232386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved role of the Vsx genes supports a monophyletic origin for bilaterian visual systems.
    Erclik T; Hartenstein V; Lipshitz HD; McInnes RR
    Curr Biol; 2008 Sep; 18(17):1278-87. PubMed ID: 18723351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation in Pleiotropic Hub Gene Expression Is Associated with Interspecific Differences in Head Shape and Eye Size in Drosophila.
    Buchberger E; Bilen A; Ayaz S; Salamanca D; Matas de Las Heras C; Niksic A; Almudi I; Torres-Oliva M; Casares F; Posnien N
    Mol Biol Evol; 2021 May; 38(5):1924-1942. PubMed ID: 33386848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular diversity of visual pigments in Stomatopoda (Crustacea).
    Porter ML; Bok MJ; Robinson PR; Cronin TW
    Vis Neurosci; 2009; 26(3):255-65. PubMed ID: 19534844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping gene regulatory networks in Drosophila eye development by large-scale transcriptome perturbations and motif inference.
    Potier D; Davie K; Hulselmans G; Naval Sanchez M; Haagen L; Huynh-Thu VA; Koldere D; Celik A; Geurts P; Christiaens V; Aerts S
    Cell Rep; 2014 Dec; 9(6):2290-303. PubMed ID: 25533349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positive circuits and d-dimensional spatial differentiation: application to the formation of sense organs in Drosophila.
    Crumière A; Sablik M
    Biosystems; 2008; 94(1-2):102-8. PubMed ID: 18723072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eye evolution at high resolution: the neuron as a unit of homology.
    Erclik T; Hartenstein V; McInnes RR; Lipshitz HD
    Dev Biol; 2009 Aug; 332(1):70-9. PubMed ID: 19467226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drosophila as a developmental paradigm of regressive brain evolution: proof of principle in the visual system.
    Friedrich M
    Brain Behav Evol; 2011; 78(3):199-215. PubMed ID: 21893944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ancient default activators of terminal photoreceptor differentiation in the pancrustacean compound eye: the homeodomain transcription factors Otd and Pph13.
    Friedrich M; Cook T; Zelhof AC
    Curr Opin Insect Sci; 2016 Feb; 13():33-42. PubMed ID: 27436551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cis-Regulatory networks during development: a view of Drosophila.
    Bonn S; Furlong EE
    Curr Opin Genet Dev; 2008 Dec; 18(6):513-20. PubMed ID: 18929653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The gene network determining development of Drosophila melanogaster mechanoreceptors.
    Furman DP; Bukharina TA
    Comput Biol Chem; 2009 Jun; 33(3):231-4. PubMed ID: 19464954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.