BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 18800877)

  • 1. Creation of new bone by the percutaneous injection of human bone marrow stromal cell and HA/TCP suspensions.
    Mankani MH; Kuznetsov SA; Marshall GW; Robey PG
    Tissue Eng Part A; 2008 Dec; 14(12):1949-58. PubMed ID: 18800877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo bone formation by human bone marrow stromal cells: effect of carrier particle size and shape.
    Mankani MH; Kuznetsov SA; Fowler B; Kingman A; Robey PG
    Biotechnol Bioeng; 2001 Jan; 72(1):96-107. PubMed ID: 11084599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo bone formation by human bone marrow stromal cells: reconstruction of the mouse calvarium and mandible.
    Mankani MH; Kuznetsov SA; Wolfe RM; Marshall GW; Robey PG
    Stem Cells; 2006 Sep; 24(9):2140-9. PubMed ID: 16763200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term stable canine mandibular augmentation using autologous bone marrow stromal cells and hydroxyapatite/tricalcium phosphate.
    Kuznetsov SA; Huang KE; Marshall GW; Robey PG; Mankani MH
    Biomaterials; 2008 Nov; 29(31):4211-6. PubMed ID: 18687465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone formation in transplants of human bone marrow stromal cells and hydroxyapatite-tricalcium phosphate: prediction with quantitative CT in mice.
    Mankani MH; Kuznetsov SA; Avila NA; Kingman A; Robey PG
    Radiology; 2004 Feb; 230(2):369-76. PubMed ID: 14752182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts.
    Krebsbach PH; Kuznetsov SA; Satomura K; Emmons RV; Rowe DW; Robey PG
    Transplantation; 1997 Apr; 63(8):1059-69. PubMed ID: 9133465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteogenesis of the construct combined BMSCs with beta-TCP in rat.
    Zhang M; Wang K; Shi Z; Yang H; Dang X; Wang W
    J Plast Reconstr Aesthet Surg; 2010 Feb; 63(2):227-32. PubMed ID: 19091642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone marrow stromal cells enhance the osteogenic properties of hydroxyapatite scaffolds by modulating the foreign body reaction.
    Tour G; Wendel M; Tcacencu I
    J Tissue Eng Regen Med; 2014 Nov; 8(11):841-9. PubMed ID: 22782939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds.
    Ye X; Yin X; Yang D; Tan J; Liu G
    Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ectopic osteogenesis by ex vivo gene therapy using beta tricalcium phosphate as a carrier.
    Han D; Sun X; Zhang X; Tang T; Dai K
    Connect Tissue Res; 2008; 49(5):343-50. PubMed ID: 18991087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation.
    Arinzeh TL; Tran T; Mcalary J; Daculsi G
    Biomaterials; 2005 Jun; 26(17):3631-8. PubMed ID: 15621253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of hematopoietic territories and bone by transplanted human bone marrow stromal cells requires a critical cell density.
    Mankani MH; Kuznetsov SA; Robey PG
    Exp Hematol; 2007 Jun; 35(6):995-1004. PubMed ID: 17960668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lamellar spacing in cuboid hydroxyapatite scaffolds regulates bone formation by human bone marrow stromal cells.
    Mankani MH; Afghani S; Franco J; Launey M; Marshall S; Marshall GW; Nissenson R; Lee J; Tomsia AP; Saiz E
    Tissue Eng Part A; 2011 Jun; 17(11-12):1615-23. PubMed ID: 21294634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells.
    Trojani C; Boukhechba F; Scimeca JC; Vandenbos F; Michiels JF; Daculsi G; Boileau P; Weiss P; Carle GF; Rochet N
    Biomaterials; 2006 Jun; 27(17):3256-64. PubMed ID: 16510180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxyapatite/tricalcium phosphate matrix scaffold as cell carriers in vitro.
    Mao XZ; Zhou JN; Hu JZ; Ruan JM; Wang WC; Ni JD
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2004 Aug; 29(4):371-5. PubMed ID: 16134582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repair of goat tibial defects with bone marrow stromal cells and beta-tricalcium phosphate.
    Liu G; Zhao L; Zhang W; Cui L; Liu W; Cao Y
    J Mater Sci Mater Med; 2008 Jun; 19(6):2367-76. PubMed ID: 18158615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Bone formation by seeding bone marrow stromal cells on the sodium calcium phosphate/beta tricalcium phosphate scaffold].
    Yang YW; Lei DL; Mao TQ; Hou R; Li JH
    Shanghai Kou Qiang Yi Xue; 2004 Aug; 13(4):278-81. PubMed ID: 15349665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repair of canine mandibular bone defects with bone marrow stromal cells and porous beta-tricalcium phosphate.
    Yuan J; Cui L; Zhang WJ; Liu W; Cao Y
    Biomaterials; 2007 Feb; 28(6):1005-13. PubMed ID: 17092556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topography of calcium phosphate ceramics regulates primary cilia length and TGF receptor recruitment associated with osteogenesis.
    Zhang J; Dalbay MT; Luo X; Vrij E; Barbieri D; Moroni L; de Bruijn JD; van Blitterswijk CA; Chapple JP; Knight MM; Yuan H
    Acta Biomater; 2017 Jul; 57():487-497. PubMed ID: 28456657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic acetal hydroxyapatite composites and endogenous osteogenic gene expression of rat marrow stromal cells.
    Patel M; Dunn TA; Tostanoski S; Fisher JP
    J Tissue Eng Regen Med; 2010 Aug; 4(6):422-36. PubMed ID: 20047194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.