BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 18801175)

  • 1. MetWAMer: eukaryotic translation initiation site prediction.
    Sparks ME; Brendel V
    BMC Bioinformatics; 2008 Sep; 9():381. PubMed ID: 18801175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TICO: a tool for improving predictions of prokaryotic translation initiation sites.
    Tech M; Pfeifer N; Morgenstern B; Meinicke P
    Bioinformatics; 2005 Sep; 21(17):3568-9. PubMed ID: 15994191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy improvement for identifying translation initiation sites in microbial genomes.
    Zhu HQ; Hu GQ; Ouyang ZQ; Wang J; She ZS
    Bioinformatics; 2004 Dec; 20(18):3308-17. PubMed ID: 15247104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational evaluation of TIS annotation for prokaryotic genomes.
    Hu GQ; Zheng X; Ju LN; Zhu H; She ZS
    BMC Bioinformatics; 2008 Mar; 9():160. PubMed ID: 18366730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of translation initiation site for microbial genomes with TriTISA.
    Hu GQ; Zheng X; Zhu HQ; She ZS
    Bioinformatics; 2009 Jan; 25(1):123-5. PubMed ID: 19015130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. JIGSAW: integration of multiple sources of evidence for gene prediction.
    Allen JE; Salzberg SL
    Bioinformatics; 2005 Sep; 21(18):3596-603. PubMed ID: 16076884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation.
    Helsens K; Van Damme P; Degroeve S; Martens L; Arnesen T; Vandekerckhove J; Gevaert K
    J Proteome Res; 2011 Aug; 10(8):3578-89. PubMed ID: 21619078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. transAlign: using amino acids to facilitate the multiple alignment of protein-coding DNA sequences.
    Bininda-Emonds OR
    BMC Bioinformatics; 2005 Jun; 6():156. PubMed ID: 15969769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene structure prediction by spliced alignment of genomic DNA with protein sequences: increased accuracy by differential splice site scoring.
    Usuka J; Brendel V
    J Mol Biol; 2000 Apr; 297(5):1075-85. PubMed ID: 10764574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using feature generation and feature selection for accurate prediction of translation initiation sites.
    Zeng F; Yap RH; Wong L
    Genome Inform; 2002; 13():192-200. PubMed ID: 14571388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Potential open reading frames within 5'-untranslated regions of eukaryotic mRNAs].
    Volkova OA; Kochetov AV; Titov SE; Kolchanov NA
    Biofizika; 2006; 51(4):615-21. PubMed ID: 16909838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A class of edit kernels for SVMs to predict translation initiation sites in eukaryotic mRNAs.
    Li H; Jiang T
    J Comput Biol; 2005; 12(6):702-18. PubMed ID: 16108712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions.
    Besemer J; Lomsadze A; Borodovsky M
    Nucleic Acids Res; 2001 Jun; 29(12):2607-18. PubMed ID: 11410670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TISs-ST: a web server to evaluate polymorphic translation initiation sites and their reflections on the secretory targets.
    Vicentini R; Menossi M
    BMC Bioinformatics; 2007 May; 8():160. PubMed ID: 17517132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using amino acid patterns to accurately predict translation initiation sites.
    Liu H; Han H; Li J; Wong L
    In Silico Biol; 2004; 4(3):255-69. PubMed ID: 15724279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An unsupervised classification scheme for improving predictions of prokaryotic TIS.
    Tech M; Meinicke P
    BMC Bioinformatics; 2006 Mar; 7():121. PubMed ID: 16526950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative translation start sites and hidden coding potential of eukaryotic mRNAs.
    Kochetov AV
    Bioessays; 2008 Jul; 30(7):683-91. PubMed ID: 18536038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finding prokaryotic genes by the 'frame-by-frame' algorithm: targeting gene starts and overlapping genes.
    Shmatkov AM; Melikyan AA; Chernousko FL; Borodovsky M
    Bioinformatics; 1999 Nov; 15(11):874-86. PubMed ID: 10743554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hon-yaku: a biology-driven Bayesian methodology for identifying translation initiation sites in prokaryotes.
    Makita Y; de Hoon MJ; Danchin A
    BMC Bioinformatics; 2007 Feb; 8():47. PubMed ID: 17286872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.