These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
392 related articles for article (PubMed ID: 1880129)
21. tRNAHis guanylyltransferase adds G-1 to the 5' end of tRNAHis by recognition of the anticodon, one of several features unexpectedly shared with tRNA synthetases. Jackman JE; Phizicky EM RNA; 2006 Jun; 12(6):1007-14. PubMed ID: 16625026 [TBL] [Abstract][Full Text] [Related]
22. The influence of identity elements on the aminoacylation of tRNA(Arg) by plant and Escherichia coli arginyl-tRNA synthetases. Aldinger CA; Leisinger AK; Igloi GL FEBS J; 2012 Oct; 279(19):3622-3638. PubMed ID: 22831759 [TBL] [Abstract][Full Text] [Related]
23. Anticodon sequence mutants of Escherichia coli initiator tRNA: effects of overproduction of aminoacyl-tRNA synthetases, methionyl-tRNA formyltransferase, and initiation factor 2 on activity in initiation. Mayer C; Köhrer C; Kenny E; Prusko C; RajBhandary UL Biochemistry; 2003 May; 42(17):4787-99. PubMed ID: 12718519 [TBL] [Abstract][Full Text] [Related]
24. Competition of aminoacyl-tRNA synthetases for tRNA ensures the accuracy of aminoacylation. Sherman JM; Rogers MJ; Söll D Nucleic Acids Res; 1992 Jun; 20(11):2847-52. PubMed ID: 1377381 [TBL] [Abstract][Full Text] [Related]
25. Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon. Blaise M; Becker HD; Lapointe J; Cambillau C; Giegé R; Kern D Biochimie; 2005; 87(9-10):847-61. PubMed ID: 16164993 [TBL] [Abstract][Full Text] [Related]
26. The role of anticodon bases and the discriminator nucleotide in the recognition of some E. coli tRNAs by their aminoacyl-tRNA synthetases. Shimizu M; Asahara H; Tamura K; Hasegawa T; Himeno H J Mol Evol; 1992 Nov; 35(5):436-43. PubMed ID: 1487827 [TBL] [Abstract][Full Text] [Related]
27. The recognition of E. coli glutamine tRNA by glutaminyl-tRNA synthetase. Rogers MJ; Weygand-Durasević I; Schwob E; Sherman JM; Rogers KC; Thomann HU; Sylvers LA; Ohtsuka E; Inokuchi H; Söll D Nucleic Acids Symp Ser; 1993; (29):211-3. PubMed ID: 7504247 [TBL] [Abstract][Full Text] [Related]
28. Similarities and differences in tRNA identity between Escherichia coli and Saccharomyces cerevisiae: evolutionary conservation and divergence. Nameki N; Asahara H; Tamura K; Himeno H; Hasegawa T; Shimizu M Nucleic Acids Symp Ser; 1995; (34):205-6. PubMed ID: 8841624 [TBL] [Abstract][Full Text] [Related]
29. Domain-domain communication for tRNA aminoacylation: the importance of covalent connectivity. Zhang CM; Hou YM Biochemistry; 2005 May; 44(19):7240-9. PubMed ID: 15882062 [TBL] [Abstract][Full Text] [Related]
30. Crystal structure of glutamyl-queuosine tRNAAsp synthetase complexed with L-glutamate: structural elements mediating tRNA-independent activation of glutamate and glutamylation of tRNAAsp anticodon. Blaise M; Olieric V; Sauter C; Lorber B; Roy B; Karmakar S; Banerjee R; Becker HD; Kern D J Mol Biol; 2008 Sep; 381(5):1224-37. PubMed ID: 18602926 [TBL] [Abstract][Full Text] [Related]
31. Structure, function and evolution of seryl-tRNA synthetases: implications for the evolution of aminoacyl-tRNA synthetases and the genetic code. Härtlein M; Cusack S J Mol Evol; 1995 May; 40(5):519-30. PubMed ID: 7540217 [TBL] [Abstract][Full Text] [Related]
32. Glycyl-tRNA synthetase from Thermus thermophilus--wide structural divergence with other prokaryotic glycyl-tRNA synthetases and functional inter-relation with prokaryotic and eukaryotic glycylation systems. Mazauric MH; Keith G; Logan D; Kreutzer R; Giegé R; Kern D Eur J Biochem; 1998 Feb; 251(3):744-57. PubMed ID: 9490048 [TBL] [Abstract][Full Text] [Related]
33. Anticodon and acceptor stem nucleotides in tRNA(Gln) are major recognition elements for E. coli glutaminyl-tRNA synthetase. Jahn M; Rogers MJ; Söll D Nature; 1991 Jul; 352(6332):258-60. PubMed ID: 1857423 [TBL] [Abstract][Full Text] [Related]
35. A single base substitution in the variable pocket of yeast tRNA(Arg) eliminates species-specific aminoacylation. Liu W; Huang Y; Eriani G; Gangloff J; Wang E; Wang Y Biochim Biophys Acta; 1999 Dec; 1473(2-3):356-62. PubMed ID: 10594373 [TBL] [Abstract][Full Text] [Related]
36. [Comparative analysis of affinity modification of several aminoacyl-tRNA synthetases with gamma-(p-azidoanilide)-ATP]. Bulychev NA; Lavrik OI; Nevinskiĭ GA Mol Biol (Mosk); 1980; 14(3):558-67. PubMed ID: 6995829 [TBL] [Abstract][Full Text] [Related]
37. The aminoacylation of structurally variant phenylalanine tRNAs from mitochondria and various nonmitochondrial sources by bovine mitochondrial phenylalanyl-tRNA synthetase. Kumazawa Y; Yokogawa T; Hasegawa E; Miura K; Watanabe K J Biol Chem; 1989 Aug; 264(22):13005-11. PubMed ID: 2473985 [TBL] [Abstract][Full Text] [Related]
38. Bovine mitochondrial tRNAPhe, tRNASer (AGY) and tRNASer (UCN): preparation using a new detection method and their properties in aminoacylation. Kumazawa Y; Yokogawa T; Miura K; Watanabe K Nucleic Acids Symp Ser; 1988; (19):97-100. PubMed ID: 3226927 [TBL] [Abstract][Full Text] [Related]
39. Aminoacylation of tRNA-Leu species from Escherichia coli and from the cytoplasm, chloroplasts and mitochondria of Phaseolus vulgaris by homologous and heterologous enzymes. Guillemaut P; Steinmetz A; Burkard G; Weil JH Biochim Biophys Acta; 1975 Jan; 378(1):64-72. PubMed ID: 1091292 [TBL] [Abstract][Full Text] [Related]
40. Relaxed substrate specificity leads to extensive tRNA mischarging by Streptococcus pneumoniae class I and class II aminoacyl-tRNA synthetases. Shepherd J; Ibba M mBio; 2014 Sep; 5(5):e01656-14. PubMed ID: 25205097 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]