These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
392 related articles for article (PubMed ID: 1880129)
41. An example of non-conservation of oligomeric structure in prokaryotic aminoacyl-tRNA synthetases. Biochemical and structural properties of glycyl-tRNA synthetase from Thermus thermophilus. Mazauric MH; Reinbolt J; Lorber B; Ebel C; Keith G; Giegé R; Kern D Eur J Biochem; 1996 Nov; 241(3):814-26. PubMed ID: 8944770 [TBL] [Abstract][Full Text] [Related]
42. Accuracy of in vivo aminoacylation requires proper balance of tRNA and aminoacyl-tRNA synthetase. Swanson R; Hoben P; Sumner-Smith M; Uemura H; Watson L; Söll D Science; 1988 Dec; 242(4885):1548-51. PubMed ID: 3144042 [TBL] [Abstract][Full Text] [Related]
43. Cross-species aminoacylation of tRNA with a long variable arm between Escherichia coli and Saccharomyces cerevisiae. Soma A; Himeno H Nucleic Acids Res; 1998 Oct; 26(19):4374-81. PubMed ID: 9742237 [TBL] [Abstract][Full Text] [Related]
44. Structural aspects and evolutionary implications of the recognition between tRNAs and aminoacyl-tRNA synthetases. Moras D Biochimie; 1993; 75(8):651-7. PubMed ID: 8286437 [TBL] [Abstract][Full Text] [Related]
45. Substrate selection by aminoacyl-tRNA synthetases. Ibba M; Thomann HU; Hong KW; Sherman JM; Weygand-Durasevic I; Sever S; Stange-Thomann N; Praetorius M; Söll D Nucleic Acids Symp Ser; 1995; (33):40-2. PubMed ID: 8643392 [TBL] [Abstract][Full Text] [Related]
46. Effect of the overproduction of phenylalanyl- and threonyl-tRNA synthetases on tRNAPhe and tRNAThr concentrations in E. coli cells. Fayat G; Fromant M; Kalogerakos T; Blanquet S Biochimie; 1983 Mar; 65(3):221-5. PubMed ID: 6405814 [TBL] [Abstract][Full Text] [Related]
47. Emergence of the universal genetic code imprinted in an RNA record. Hohn MJ; Park HS; O'Donoghue P; Schnitzbauer M; Söll D Proc Natl Acad Sci U S A; 2006 Nov; 103(48):18095-100. PubMed ID: 17110438 [TBL] [Abstract][Full Text] [Related]
48. Involvement of the size and sequence of the anticodon loop in tRNA recognition by mammalian and E. coli methionyl-tRNA synthetases. Meinnel T; Mechulam Y; Fayat G; Blanquet S Nucleic Acids Res; 1992 Sep; 20(18):4741-6. PubMed ID: 1408786 [TBL] [Abstract][Full Text] [Related]
49. Small RNA helices as substrates for aminoacylation and their relationship to charging of transfer RNAs. Francklyn C; Musier-Forsyth K; Schimmel P Eur J Biochem; 1992 Jun; 206(2):315-21. PubMed ID: 1375910 [TBL] [Abstract][Full Text] [Related]
50. Class I and II aminoacyl-tRNA synthetase tRNA groove discrimination created the first synthetase-tRNA cognate pairs and was therefore essential to the origin of genetic coding. Carter CW; Wills PR IUBMB Life; 2019 Aug; 71(8):1088-1098. PubMed ID: 31190358 [TBL] [Abstract][Full Text] [Related]
51. Base substitutions in the wobble position of the anticodon inhibit aminoacylation of E. coli tRNAfMet by E. coli Met-tRNA synthetase. Schulman LH; Pelka H; Susani M Nucleic Acids Res; 1983 Mar; 11(5):1439-55. PubMed ID: 6338482 [TBL] [Abstract][Full Text] [Related]
52. Threonyl-tRNA, lysyl-tRNA and arginyl-tRNA synthetases from Baker's yeast. Substrate specificity with regard to ATP analogues. Freist W; Sternbach H; von der Haar F; Cramer F Eur J Biochem; 1978 Mar; 84(2):499-502. PubMed ID: 346350 [TBL] [Abstract][Full Text] [Related]
53. The accuracy of aminoacylation--ensuring the fidelity of the genetic code. Söll D Experientia; 1990 Dec; 46(11-12):1089-96. PubMed ID: 2253707 [TBL] [Abstract][Full Text] [Related]
54. Species-specific differences in the operational RNA code for aminoacylation of tRNAPro. Stehlin C; Burke B; Yang F; Liu H; Shiba K; Musier-Forsyth K Biochemistry; 1998 Jun; 37(23):8605-13. PubMed ID: 9622512 [TBL] [Abstract][Full Text] [Related]
55. Yeast mitochondrial threonyl-tRNA synthetase recognizes tRNA isoacceptors by distinct mechanisms and promotes CUN codon reassignment. Ling J; Peterson KM; Simonović I; Cho C; Söll D; Simonović M Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3281-6. PubMed ID: 22343532 [TBL] [Abstract][Full Text] [Related]
57. Enzymatic aminoacylation of tRNA acceptor stem helices with cysteine is dependent on a single nucleotide. Hamann CS; Hou YM Biochemistry; 1995 May; 34(19):6527-32. PubMed ID: 7756283 [TBL] [Abstract][Full Text] [Related]
58. Domain-domain communication in aminoacyl-tRNA synthetases. Alexander RW; Schimmel P Prog Nucleic Acid Res Mol Biol; 2001; 69():317-49. PubMed ID: 11550797 [TBL] [Abstract][Full Text] [Related]
59. Aminoacylation of tRNA in the evolution of an aminoacyl-tRNA synthetase. Lipman RS; Hou YM Proc Natl Acad Sci U S A; 1998 Nov; 95(23):13495-500. PubMed ID: 9811828 [TBL] [Abstract][Full Text] [Related]
60. Interactions between tRNA identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the cognate amino acid affinity of the enzyme. Ibba M; Hong KW; Sherman JM; Sever S; Söll D Proc Natl Acad Sci U S A; 1996 Jul; 93(14):6953-8. PubMed ID: 8692925 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]