BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 18801566)

  • 21. Recent developments in biodegradable synthetic polymers.
    Gunatillake P; Mayadunne R; Adhikari R
    Biotechnol Annu Rev; 2006; 12():301-47. PubMed ID: 17045198
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study on the control of the compositions and properties of a biodegradable polyester elastomer.
    Liu Q; Tan T; Weng J; Zhang L
    Biomed Mater; 2009 Apr; 4(2):025015. PubMed ID: 19349654
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodegradable elastomeric scaffolds with basic fibroblast growth factor release.
    Guan J; Stankus JJ; Wagner WR
    J Control Release; 2007 Jul; 120(1-2):70-8. PubMed ID: 17509717
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent Progress in Advanced Polyester Elastomers for Tissue Engineering and Bioelectronics.
    Zhao Y; Zhong W
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138515
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications.
    Guan J; Fujimoto KL; Sacks MS; Wagner WR
    Biomaterials; 2005 Jun; 26(18):3961-71. PubMed ID: 15626443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PLA-based biodegradable and tunable soft elastomers for biomedical applications.
    Harrane A; Leroy A; Nouailhas H; Garric X; Coudane J; Nottelet B
    Biomed Mater; 2011 Dec; 6(6):065006. PubMed ID: 22101003
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Citric-acid-derived photo-cross-linked biodegradable elastomers.
    Gyawali D; Tran RT; Guleserian KJ; Tang L; Yang J
    J Biomater Sci Polym Ed; 2010; 21(13):1761-82. PubMed ID: 20557687
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique.
    Zhang C; Wen X; Vyavahare NR; Boland T
    Biomaterials; 2008 Oct; 29(28):3781-91. PubMed ID: 18602156
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-Healing Polyester Urethane Supramolecular Elastomers Reinforced with Cellulose Nanocrystals for Biomedical Applications.
    Zeimaran E; Pourshahrestani S; Kadri NA; Kong D; Shirazi SFS; Naveen SV; Murugan SS; Kumaravel TS; Salamatinia B
    Macromol Biosci; 2019 Oct; 19(10):e1900176. PubMed ID: 31441595
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polyester elastomers for soft tissue engineering.
    Ye H; Zhang K; Kai D; Li Z; Loh XJ
    Chem Soc Rev; 2018 Jun; 47(12):4545-4580. PubMed ID: 29722412
    [TBL] [Abstract][Full Text] [Related]  

  • 31. (Citric acid-co-polycaprolactone triol) polyester: a biodegradable elastomer for soft tissue engineering.
    Thomas LV; Nair PD
    Biomatter; 2011; 1(1):81-90. PubMed ID: 23507730
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amino alcohol-based degradable poly(ester amide) elastomers.
    Bettinger CJ; Bruggeman JP; Borenstein JT; Langer RS
    Biomaterials; 2008 May; 29(15):2315-25. PubMed ID: 18295329
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications.
    Barrioni BR; de Carvalho SM; Oréfice RL; de Oliveira AA; Pereira Mde M
    Mater Sci Eng C Mater Biol Appl; 2015; 52():22-30. PubMed ID: 25953536
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis, characterization, and cytocompatibility of elastomeric, biodegradable poly(ester-urethane)ureas based on poly(caprolactone) and putrescine.
    Guan J; Sacks MS; Beckman EJ; Wagner WR
    J Biomed Mater Res; 2002 Sep; 61(3):493-503. PubMed ID: 12115475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study.
    Li X; Loh XJ; Wang K; He C; Li J
    Biomacromolecules; 2005; 6(5):2740-7. PubMed ID: 16153114
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering.
    Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH
    J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thiol-containing degradable poly(thiourethane-urethane)s for tissue engineering.
    Eglin D; Griffon S; Alini M
    J Biomater Sci Polym Ed; 2010; 21(4):477-91. PubMed ID: 20233504
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biocompatible, Biodegradable, and Electroactive Polyurethane-Urea Elastomers with Tunable Hydrophilicity for Skeletal Muscle Tissue Engineering.
    Chen J; Dong R; Ge J; Guo B; Ma PX
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28273-85. PubMed ID: 26641320
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Degradation properties of a biodegradable shape memory elastomer, poly(glycerol dodecanoate), for soft tissue repair.
    Ramaraju H; Solorio LD; Bocks ML; Hollister SJ
    PLoS One; 2020; 15(2):e0229112. PubMed ID: 32084184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of a slowly degrading biodegradable polyester-urethane for tissue engineering scaffolds.
    Henry JA; Simonet M; Pandit A; Neuenschwander P
    J Biomed Mater Res A; 2007 Sep; 82(3):669-79. PubMed ID: 17323319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.