These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 18801889)

  • 1. Using time-use data to parameterize models for the spread of close-contact infectious diseases.
    Zagheni E; Billari FC; Manfredi P; Melegaro A; Mossong J; Edmunds WJ
    Am J Epidemiol; 2008 Nov; 168(9):1082-90. PubMed ID: 18801889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contact patterns and their implied basic reproductive numbers: an illustration for varicella-zoster virus.
    Effelterre TV; Shkedy Z; Aerts M; Molenberghs G; Damme PV; Beutels P
    Epidemiol Infect; 2009 Jan; 137(1):48-57. PubMed ID: 18466660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents.
    Wallinga J; Teunis P; Kretzschmar M
    Am J Epidemiol; 2006 Nov; 164(10):936-44. PubMed ID: 16968863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What types of contacts are important for the spread of infections?: using contact survey data to explore European mixing patterns.
    Melegaro A; Jit M; Gay N; Zagheni E; Edmunds WJ
    Epidemics; 2011 Sep; 3(3-4):143-51. PubMed ID: 22094337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relative importance of frequency of contacts and duration of exposure for the spread of directly transmitted infections.
    De Cao E; Zagheni E; Manfredi P; Melegaro A
    Biostatistics; 2014 Jul; 15(3):470-83. PubMed ID: 24705143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling age-dependent force of infection from prevalence data using fractional polynomials.
    Shkedy Z; Aerts M; Molenberghs G; Beutels P; Van Damme P
    Stat Med; 2006 May; 25(9):1577-91. PubMed ID: 16252265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methodology of the sensitivity analysis used for modeling an infectious disease.
    Okaïs C; Roche S; Kürzinger ML; Riche B; Bricout H; Derrough T; Simondon F; Ecochard R
    Vaccine; 2010 Nov; 28(51):8132-40. PubMed ID: 20950727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixing in age-structured population models of infectious diseases.
    Glasser J; Feng Z; Moylan A; Del Valle S; Castillo-Chavez C
    Math Biosci; 2012 Jan; 235(1):1-7. PubMed ID: 22037144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deterministic epidemic models with explicit household structure.
    House T; Keeling MJ
    Math Biosci; 2008 May; 213(1):29-39. PubMed ID: 18374370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infections with varying contact rates: application to varicella.
    Whitaker HJ; Farrington CP
    Biometrics; 2004 Sep; 60(3):615-23. PubMed ID: 15339283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using empirical social contact data to model person to person infectious disease transmission: an illustration for varicella.
    Ogunjimi B; Hens N; Goeyvaerts N; Aerts M; Van Damme P; Beutels P
    Math Biosci; 2009 Apr; 218(2):80-7. PubMed ID: 19174173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious diseases.
    d'Onofrio A; Manfredi P
    J Theor Biol; 2009 Feb; 256(3):473-8. PubMed ID: 18992258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating the transmission rate for a highly infectious disease.
    Becker NG; Hasofer AM
    Biometrics; 1998 Jun; 54(2):730-8. PubMed ID: 9629653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Modelling the impact of vaccination on the epidemiology of varicella zoster virus].
    Bonmarin I; Santa-Olalla P; Lévy-Bruhl D
    Rev Epidemiol Sante Publique; 2008 Oct; 56(5):323-31. PubMed ID: 18951741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of effective reproduction numbers for infectious diseases using serological survey data.
    Farrington CP; Whitaker HJ
    Biostatistics; 2003 Oct; 4(4):621-32. PubMed ID: 14557115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Kermack-McKendrick model applied to an infectious disease in a natural population.
    Roberts MG
    IMA J Math Appl Med Biol; 1999 Dec; 16(4):319-32. PubMed ID: 10669893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A discrete-time model for the statistical analysis of infectious disease incidence data.
    Rampey AH; Longini IM; Haber M; Monto AS
    Biometrics; 1992 Mar; 48(1):117-28. PubMed ID: 1316178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infection transmission science and models.
    Koopman JS
    Jpn J Infect Dis; 2005 Dec; 58(6):S3-8. PubMed ID: 16377860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promotion time models with time-changing exposure and heterogeneity: application to infectious diseases.
    Tournoud M; Ecochard R
    Biom J; 2008 Jun; 50(3):395-407. PubMed ID: 18435501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling on social spread from immunity.
    Yasuda H; Yoshizawa N; Suzuki K
    Jpn J Infect Dis; 2005 Dec; 58(6):S14-5. PubMed ID: 16377856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.