These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 18801915)

  • 1. Glucose increases synaptic transmission from vagal afferent central nerve terminals via modulation of 5-HT3 receptors.
    Wan S; Browning KN
    Am J Physiol Gastrointest Liver Physiol; 2008 Nov; 295(5):G1050-7. PubMed ID: 18801915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. D-glucose modulates synaptic transmission from the central terminals of vagal afferent fibers.
    Wan S; Browning KN
    Am J Physiol Gastrointest Liver Physiol; 2008 Mar; 294(3):G757-63. PubMed ID: 18202107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vagal afferent control of opioidergic effects in rat brainstem circuits.
    Browning KN; Zheng Z; Gettys TW; Travagli RA
    J Physiol; 2006 Sep; 575(Pt 3):761-76. PubMed ID: 16825311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose-dependent trafficking of 5-HT3 receptors in rat gastrointestinal vagal afferent neurons.
    Babic T; Troy AE; Fortna SR; Browning KN
    Neurogastroenterol Motil; 2012 Oct; 24(10):e476-88. PubMed ID: 22845622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prolactin-releasing peptide affects gastric motor function in rat by modulating synaptic transmission in the dorsal vagal complex.
    Grabauskas G; Zhou SY; Das S; Lu Y; Owyang C; Moises HC
    J Physiol; 2004 Dec; 561(Pt 3):821-39. PubMed ID: 15486017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the rat.
    Zhu JX; Zhu XY; Owyang C; Li Y
    J Physiol; 2001 Feb; 530(Pt 3):431-42. PubMed ID: 11158274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vagally evoked synaptic currents in the immature rat nucleus tractus solitarii in an intact in vitro preparation.
    Smith BN; Dou P; Barber WD; Dudek FE
    J Physiol; 1998 Oct; 512 ( Pt 1)(Pt 1):149-62. PubMed ID: 9729625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of cholecystokinin-8s in the nucleus tractus solitarius of vagally deafferented rats.
    Baptista V; Browning KN; Travagli RA
    Am J Physiol Regul Integr Comp Physiol; 2007 Mar; 292(3):R1092-100. PubMed ID: 17122331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional organization of presynaptic metabotropic glutamate receptors in vagal brainstem circuits.
    Browning KN; Travagli RA
    J Neurosci; 2007 Aug; 27(34):8979-88. PubMed ID: 17715335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of central vagal 5-HT3 receptors in gastrointestinal physiology and pathophysiology.
    Browning KN
    Front Neurosci; 2015; 9():413. PubMed ID: 26578870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional GABAA receptors on rat vagal afferent neurones.
    Ashworth-Preece M; Krstew E; Jarrott B; Lawrence AJ
    Br J Pharmacol; 1997 Feb; 120(3):469-75. PubMed ID: 9031751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 5-hydroxytryptamine-mediated neurotransmission modulates spontaneous and vagal-evoked glutamate release in the nucleus of the solitary tract effect of uptake blockade.
    Hosford PS; Mifflin SW; Ramage AG
    J Pharmacol Exp Ther; 2014 May; 349(2):288-96. PubMed ID: 24618127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presynaptic melanocortin-4 receptors on vagal afferent fibers modulate the excitability of rat nucleus tractus solitarius neurons.
    Wan S; Browning KN; Coleman FH; Sutton G; Zheng H; Butler A; Berthoud HR; Travagli RA
    J Neurosci; 2008 May; 28(19):4957-66. PubMed ID: 18463249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Receptor subtype specific activation of the rat gastric vagal afferent fibers to serotonin.
    Uneyama H; Niijima A; Tanaka T; Torii K
    Life Sci; 2002 Dec; 72(4-5):415-23. PubMed ID: 12467882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of 5-HT1B and 5-HT1D receptors in the rat nucleus tractus solitarius: opposing action on neurones that receive an excitatory vagal C-fibre afferent input.
    Jeggo RD; Wang Y; Jordan D; Ramage AG
    Br J Pharmacol; 2007 Apr; 150(8):987-95. PubMed ID: 17339842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High fat diet attenuates glucose-dependent facilitation of 5-HT3 -mediated responses in rat gastric vagal afferents.
    Troy AE; Simmonds SS; Stocker SD; Browning KN
    J Physiol; 2016 Jan; 594(1):99-114. PubMed ID: 26456775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Presynaptic or postsynaptic location of receptors for angiotensin II and substance P in the medial solitary tract nucleus.
    Qu L; McQueeney AJ; Barnes KL
    J Neurophysiol; 1996 Jun; 75(6):2220-8. PubMed ID: 8793736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corticosterone inhibits vagal afferent glutamate release in the nucleus of the solitary tract via retrograde endocannabinoid signaling.
    Ragozzino FJ; Arnold RA; Kowalski CW; Savenkova MI; Karatsoreos IN; Peters JH
    Am J Physiol Cell Physiol; 2020 Dec; 319(6):C1097-C1106. PubMed ID: 32966126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of Amygdala Circuits by 5-HT Neurons via 5-HT and Glutamate Cotransmission.
    Sengupta A; Bocchio M; Bannerman DM; Sharp T; Capogna M
    J Neurosci; 2017 Feb; 37(7):1785-1796. PubMed ID: 28087766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TRPM3 expression and control of glutamate release from primary vagal afferent neurons.
    Ragozzino FJ; Arnold RA; Fenwick AJ; Riley TP; Lindberg JEM; Peterson B; Peters JH
    J Neurophysiol; 2021 Jan; 125(1):199-210. PubMed ID: 33296617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.