These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 18802510)

  • 1. Engineering tandem modular protein based reversible hydrogels.
    Cao Y; Li H
    Chem Commun (Camb); 2008 Sep; (35):4144-6. PubMed ID: 18802510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tandem modular protein-based hydrogels constructed using a novel two-component approach.
    Lv S; Cao Y; Li H
    Langmuir; 2012 Jan; 28(4):2269-74. PubMed ID: 22085110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the erosion rate of artificial protein hydrogels through control of network topology.
    Shen W; Zhang K; Kornfield JA; Tirrell DA
    Nat Mater; 2006 Feb; 5(2):153-8. PubMed ID: 16444261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide.
    Pochan DJ; Schneider JP; Kretsinger J; Ozbas B; Rajagopal K; Haines L
    J Am Chem Soc; 2003 Oct; 125(39):11802-3. PubMed ID: 14505386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible hydrogels from self-assembling genetically engineered protein block copolymers.
    Xu C; Breedveld V; Kopecek J
    Biomacromolecules; 2005; 6(3):1739-49. PubMed ID: 15877401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small globular protein motif forms particulate hydrogel under various pH conditions.
    Fang J; Zhang X; Cai Y; Wei Y
    Biomacromolecules; 2011 May; 12(5):1578-84. PubMed ID: 21413697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A modular approach to the design of protein-based smart gels.
    Grove TZ; Forster J; Pimienta G; Dufresne E; Regan L
    Biopolymers; 2012 Jul; 97(7):508-17. PubMed ID: 22328209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New materials from proteins and peptides.
    Grove TZ; Regan L
    Curr Opin Struct Biol; 2012 Aug; 22(4):451-6. PubMed ID: 22832173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of motif-programmed artificial proteins on the calcium uptake in a synthetic hydrogel.
    Chirila TV; Minamisawa T; Keen I; Shiba K
    Macromol Biosci; 2009 Oct; 9(10):959-67. PubMed ID: 19569172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose responsive hydrogel networks based on protein recognition.
    Ehrick JD; Luckett MR; Khatwani S; Wei Y; Deo SK; Bachas LG; Daunert S
    Macromol Biosci; 2009 Sep; 9(9):864-8. PubMed ID: 19434674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells.
    Zhou M; Smith AM; Das AK; Hodson NW; Collins RF; Ulijn RV; Gough JE
    Biomaterials; 2009 May; 30(13):2523-30. PubMed ID: 19201459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a novel heme protein with a non-heme globin scaffold.
    Isogai Y; Ishida M
    Biochemistry; 2009 Sep; 48(34):8136-42. PubMed ID: 19601582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of reactive poloxamer 407s for biomedical applications.
    Niu G; Du F; Song L; Zhang H; Yang J; Cao H; Zheng Y; Yang Z; Wang G; Yang H; Zhu S
    J Control Release; 2009 Aug; 138(1):49-56. PubMed ID: 19409430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible sol-gel signaling system with epMB for the study of enzyme- and pH-triggered oligonucleotide release from a biotin hydrogel.
    Seo YJ; Bhuniya S; Kim BH
    Chem Commun (Camb); 2007 May; (18):1804-6. PubMed ID: 17476393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of a ball-and-spike protein supramolecule.
    Sugimoto K; Kanamaru S; Iwasaki K; Arisaka F; Yamashita I
    Angew Chem Int Ed Engl; 2006 Apr; 45(17):2725-8. PubMed ID: 16555353
    [No Abstract]   [Full Text] [Related]  

  • 16. Creation of a new eye lens crystallin (Gambeta) through structure-guided mutagenic grafting of the surface of betaB2 crystallin onto the hydrophobic core of gammaB crystallin.
    Kapoor D; Singh B; Subramanian K; Guptasarma P
    FEBS J; 2009 Jun; 276(12):3341-53. PubMed ID: 19438717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Domain insertion effectively regulates the mechanical unfolding hierarchy of elastomeric proteins: toward engineering multifunctional elastomeric proteins.
    Peng Q; Li H
    J Am Chem Soc; 2009 Oct; 131(39):14050-6. PubMed ID: 19746906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Protein Hydrogels Using SpyCatcher-SpyTag Chemistry.
    Gao X; Fang J; Xue B; Fu L; Li H
    Biomacromolecules; 2016 Sep; 17(9):2812-9. PubMed ID: 27477779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering shape memory and morphing protein hydrogels based on protein unfolding and folding.
    Bian Q; Fu L; Li H
    Nat Commun; 2022 Jan; 13(1):137. PubMed ID: 35013234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulation study of P (VP-co-HEMA) hydrogels: effect of water content on equilibrium structures and mechanical properties.
    Lee SG; Brunello GF; Jang SS; Bucknall DG
    Biomaterials; 2009 Oct; 30(30):6130-41. PubMed ID: 19656562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.