BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 18802535)

  • 1. Chemogenetic protein engineering: an efficient tool for the optimization of artificial metalloenzymes.
    Pordea A; Ward TR
    Chem Commun (Camb); 2008 Sep; (36):4239-49. PubMed ID: 18802535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designed evolution of artificial metalloenzymes: protein catalysts made to order.
    Creus M; Ward TR
    Org Biomol Chem; 2007 Jun; 5(12):1835-44. PubMed ID: 17551630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial metalloenzymes for enantioselective catalysis based on the noncovalent incorporation of organometallic moieties in a host protein.
    Ward TR
    Chemistry; 2005 Jun; 11(13):3798-804. PubMed ID: 15761912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Merging the best of two worlds: artificial metalloenzymes for enantioselective catalysis.
    Ringenberg MR; Ward TR
    Chem Commun (Camb); 2011 Aug; 47(30):8470-6. PubMed ID: 21603692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial metalloenzymes for enantioselective catalysis based on biotin-avidin.
    Collot J; Gradinaru J; Humbert N; Skander M; Zocchi A; Ward TR
    J Am Chem Soc; 2003 Jul; 125(30):9030-1. PubMed ID: 15369356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogenase cluster biosynthesis: organometallic chemistry nature's way.
    McGlynn SE; Mulder DW; Shepard EM; Broderick JB; Peters JW
    Dalton Trans; 2009 Jun; (22):4274-85. PubMed ID: 19662302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond.
    Ward TR
    Acc Chem Res; 2011 Jan; 44(1):47-57. PubMed ID: 20949947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic hydrogenases: incorporation of an iron carbonyl thiolate into a designed peptide.
    Jones AK; Lichtenstein BR; Dutta A; Gordon G; Dutton PL
    J Am Chem Soc; 2007 Dec; 129(48):14844-5. PubMed ID: 17997557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray structure and designed evolution of an artificial transfer hydrogenase.
    Creus M; Pordea A; Rossel T; Sardo A; Letondor C; Ivanova A; Letrong I; Stenkamp RE; Ward TR
    Angew Chem Int Ed Engl; 2008; 47(8):1400-4. PubMed ID: 18176932
    [No Abstract]   [Full Text] [Related]  

  • 10. Directed evolution of artificial metalloenzymes for in vivo metathesis.
    Jeschek M; Reuter R; Heinisch T; Trindler C; Klehr J; Panke S; Ward TR
    Nature; 2016 Sep; 537(7622):661-665. PubMed ID: 27571282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial metalloenzymes: (strept)avidin as host for enantioselective hydrogenation by achiral biotinylated rhodium-diphosphine complexes.
    Skander M; Humbert N; Collot J; Gradinaru J; Klein G; Loosli A; Sauser J; Zocchi A; Gilardoni F; Ward TR
    J Am Chem Soc; 2004 Nov; 126(44):14411-8. PubMed ID: 15521760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring the active site of chemzymes by using a chemogenetic-optimization procedure: towards substrate-specific artificial hydrogenases based on the biotin-avidin technology.
    Klein G; Humbert N; Gradinaru J; Ivanova A; Gilardoni F; Rusbandi UE; Ward TR
    Angew Chem Int Ed Engl; 2005 Dec; 44(47):7764-7. PubMed ID: 16276543
    [No Abstract]   [Full Text] [Related]  

  • 13. Coordinated design of cofactor and active site structures in development of new protein catalysts.
    Ueno T; Koshiyama T; Ohashi M; Kondo K; Kono M; Suzuki A; Yamane T; Watanabe Y
    J Am Chem Soc; 2005 May; 127(18):6556-62. PubMed ID: 15869276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dinuclear Ni(mu-H)Ru complex derived from H2.
    Ogo S; Kabe R; Uehara K; Kure B; Nishimura T; Menon SC; Harada R; Fukuzumi S; Higuchi Y; Ohhara T; Tamada T; Kuroki R
    Science; 2007 Apr; 316(5824):585-7. PubMed ID: 17463285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and biological analysis of the metal sites of Escherichia coli hydrogenase accessory protein HypB.
    Dias AV; Mulvihill CM; Leach MR; Pickering IJ; George GN; Zamble DB
    Biochemistry; 2008 Nov; 47(46):11981-91. PubMed ID: 18942856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic Engineering of an Artificial Metalloenzyme for Transfer Hydrogenation of a Self-Immolative Substrate in Escherichia coli's Periplasm.
    Zhao J; Rebelein JG; Mallin H; Trindler C; Pellizzoni MM; Ward TR
    J Am Chem Soc; 2018 Oct; 140(41):13171-13175. PubMed ID: 30272972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directed Evolution of Artificial Metalloenzymes: Genetic Optimization of the Catalytic Activity.
    Hestericová M
    Chimia (Aarau); 2018 Apr; 72(4):189-192. PubMed ID: 29720306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron density controlled carbamate ligand binding mode: towards a better understanding of metalloenzyme activity.
    Neuhäuser C; Domide D; Mautz J; Kaifer E; Himmel HJ
    Dalton Trans; 2008 Apr; (14):1821-4. PubMed ID: 18369486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution.
    Liang AD; Serrano-Plana J; Peterson RL; Ward TR
    Acc Chem Res; 2019 Mar; 52(3):585-595. PubMed ID: 30735358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ruthenium half-sandwich complexes as protein kinase inhibitors: derivatization of the pyridocarbazole pharmacophore ligand.
    Pagano N; Maksimoska J; Bregman H; Williams DS; Webster RD; Xue F; Meggers E
    Org Biomol Chem; 2007 Apr; 5(8):1218-27. PubMed ID: 17406720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.