These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. The development of the middle ear in neonatal chinchillas II. Two weeks to adulthood. Hsu RW; Margolis RH; Schachern PA; Javel E Acta Otolaryngol; 2001 Sep; 121(6):679-88. PubMed ID: 11678166 [TBL] [Abstract][Full Text] [Related]
24. Hearing loss from interrupted, intermittent, and time varying non-Gaussian noise exposure: The applicability of the equal energy hypothesis. Hamernik RP; Qiu W; Davis B J Acoust Soc Am; 2007 Oct; 122(4):2245-54. PubMed ID: 17902860 [TBL] [Abstract][Full Text] [Related]
25. Role of the kurtosis statistic in evaluating complex noise exposures for the protection of hearing. Davis RI; Qiu W; Hamernik RP Ear Hear; 2009 Oct; 30(5):628-34. PubMed ID: 19657275 [TBL] [Abstract][Full Text] [Related]
28. Bandwidth dependency of cochlear centrifugal pathways in modulating hearing desensitization caused by loud sound. Rajan R Neuroscience; 2007 Jul; 147(4):1103-13. PubMed ID: 17600627 [TBL] [Abstract][Full Text] [Related]
29. The behavior of acoustic distortion products in the ear canals of chinchillas with normal or damaged ears. Zurek PM; Clark WW; Kim DO J Acoust Soc Am; 1982 Sep; 72(3):774-80. PubMed ID: 7130536 [TBL] [Abstract][Full Text] [Related]
30. Auditory temporal integration in the normal-hearing and hearing-impaired cat. Solecki JM; Gerken GM J Acoust Soc Am; 1990 Aug; 88(2):779-85. PubMed ID: 2212303 [TBL] [Abstract][Full Text] [Related]
31. The role of the chinchilla pinna and ear canal in electrophysiological measures of hearing thresholds. Murphy WJ; Davis RR J Acoust Soc Am; 1998 Apr; 103(4):1951-6. PubMed ID: 9566318 [TBL] [Abstract][Full Text] [Related]
32. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans. Sun XM Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284 [TBL] [Abstract][Full Text] [Related]
33. Effect of infrasound on cochlear damage from exposure to a 4 kHz octave band of noise. Harding GW; Bohne BA; Lee SC; Salt AN Hear Res; 2007 Mar; 225(1-2):128-38. PubMed ID: 17300889 [TBL] [Abstract][Full Text] [Related]
34. Two separate inhibitory mechanisms shape the responses of dorsal cochlear nucleus type IV units to narrowband and wideband stimuli. Nelken I; Young ED J Neurophysiol; 1994 Jun; 71(6):2446-62. PubMed ID: 7931527 [TBL] [Abstract][Full Text] [Related]
35. Isolating the auditory system from acoustic noise during functional magnetic resonance imaging: examination of noise conduction through the ear canal, head, and body. Ravicz ME; Melcher JR J Acoust Soc Am; 2001 Jan; 109(1):216-31. PubMed ID: 11206150 [TBL] [Abstract][Full Text] [Related]
36. Relative loudness perception of low and high frequency sounds in the open and occluded ear. Keidser G; Katsch R; Dillon H; Grant F J Acoust Soc Am; 2000 Jun; 107(6):3351-7. PubMed ID: 10875380 [TBL] [Abstract][Full Text] [Related]
37. The importance of "temporal pattern" in traumatic impulse noise exposures. Danielson R; Henderson D; Gratton MA; Bianchi L; Salvi R J Acoust Soc Am; 1991 Jul; 90(1):209-18. PubMed ID: 1880291 [TBL] [Abstract][Full Text] [Related]
38. Impulse noise: some definitions, physical acoustics and other considerations. Hamernik RP; Hsueh KD J Acoust Soc Am; 1991 Jul; 90(1):189-96. PubMed ID: 1880288 [No Abstract] [Full Text] [Related]
39. Middle ear transmission losses caused by tympanic membrane perforations in cats. Tonndorf J; McArdle F; Kruger B Acta Otolaryngol; 1976; 81(3-4):330-6. PubMed ID: 1266620 [TBL] [Abstract][Full Text] [Related]