These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. The energy spectrum of an impulse: its relation to hearing loss. Hamernik RP; Ahroon WA; Hsueh KD J Acoust Soc Am; 1991 Jul; 90(1):197-204. PubMed ID: 1880289 [TBL] [Abstract][Full Text] [Related]
6. The importance of "temporal pattern" in traumatic impulse noise exposures. Danielson R; Henderson D; Gratton MA; Bianchi L; Salvi R J Acoust Soc Am; 1991 Jul; 90(1):209-18. PubMed ID: 1880291 [TBL] [Abstract][Full Text] [Related]
7. Modeling the interactions between noise exposure and other variables. Humes LE; Jesteadt W J Acoust Soc Am; 1991 Jul; 90(1):182-8. PubMed ID: 1880287 [TBL] [Abstract][Full Text] [Related]
8. Comparative temporary threshold shifts in a harbor porpoise and harbor seal, and severe shift in a seal. Kastelein RA; Gransier R; Hoek L J Acoust Soc Am; 2013 Jul; 134(1):13-6. PubMed ID: 23862780 [TBL] [Abstract][Full Text] [Related]
9. The role of intermittence in PTS. Ward WD J Acoust Soc Am; 1991 Jul; 90(1):164-9. PubMed ID: 1880284 [TBL] [Abstract][Full Text] [Related]
10. Hearing loss in the chinchilla from impact and continuous noise exposure. Dunn DE; Davis RR; Merry CJ; Franks JR J Acoust Soc Am; 1991 Oct; 90(4 Pt 1):1979-85. PubMed ID: 1669963 [TBL] [Abstract][Full Text] [Related]
11. The growth of and recovery from TTS in human subjects exposed to impact noise. Laroche C; Hétu R; Poirier S J Acoust Soc Am; 1989 Apr; 85(4):1681-90. PubMed ID: 2708684 [TBL] [Abstract][Full Text] [Related]
12. Temporary threshold shifts produced by exposure to low-frequency noises. Mills JH; Osguthorpe JD; Burdick CK; Patterson JH; Mozo B J Acoust Soc Am; 1983 Mar; 73(3):918-23. PubMed ID: 6841817 [TBL] [Abstract][Full Text] [Related]
13. The influence of moderate-intensity noise on the compound action potential evoked by tone bursts in the guinea pig, Cavia porcellus. Walger M; Schmidt U; von Wedel H Hear Res; 1985; 19(2):143-9. PubMed ID: 4055533 [TBL] [Abstract][Full Text] [Related]
14. Impulse noise: some definitions, physical acoustics and other considerations. Hamernik RP; Hsueh KD J Acoust Soc Am; 1991 Jul; 90(1):189-96. PubMed ID: 1880288 [No Abstract] [Full Text] [Related]
15. [Comparison of methods for early detection of noise vulnerability of the inner ear. Amplitude reduction of otoacoustic emissions are most sensitive at submaximal noise impulse exposure]. Plinkert PK; Hemmert W; Zenner HP HNO; 1995 Feb; 43(2):89-97. PubMed ID: 7713771 [TBL] [Abstract][Full Text] [Related]
17. [Measurement of the temporary auditory threshold shift (TTS) for evaluation of the degree of noise hazard]. Lipowczan A; Sułkowski W; Tengler M Med Pr; 1983; 34(5-6):419-25. PubMed ID: 6672530 [TBL] [Abstract][Full Text] [Related]
18. Evidence of "hidden hearing loss" following noise exposures that produce robust TTS and ABR wave-I amplitude reductions. Lobarinas E; Spankovich C; Le Prell CG Hear Res; 2017 Jun; 349():155-163. PubMed ID: 28003148 [TBL] [Abstract][Full Text] [Related]
19. The effect of an age-related hearing loss gene (Ahl) on noise-induced hearing loss and cochlear damage from low-frequency noise. Harding GW; Bohne BA; Vos JD Hear Res; 2005 Jun; 204(1-2):90-100. PubMed ID: 15925194 [TBL] [Abstract][Full Text] [Related]
20. Long-term evidence of noise-induced permanent threshold shift in a harbor seal (Phoca vitulina). Reichmuth C; Sills JM; Mulsow J; Ghoul A J Acoust Soc Am; 2019 Oct; 146(4):2552. PubMed ID: 31671984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]