These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 18802843)

  • 1. Modeling structural adaptation of microcirculation.
    Pries AR; Secomb TW
    Microcirculation; 2008 Nov; 15(8):753-64. PubMed ID: 18802843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microvascular adaptation--regulation, coordination and function.
    Pries AR; Secomb TW
    Z Kardiol; 2000; 89 Suppl 9():IX/117-20. PubMed ID: 11151780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical models for regulation of blood flow.
    Secomb TW
    Microcirculation; 2008 Nov; 15(8):765-75. PubMed ID: 18951240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Making microvascular networks work: angiogenesis, remodeling, and pruning.
    Pries AR; Secomb TW
    Physiology (Bethesda); 2014 Nov; 29(6):446-55. PubMed ID: 25362638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural adaptation and heterogeneity of normal and tumor microvascular networks.
    Pries AR; Cornelissen AJ; Sloot AA; Hinkeldey M; Dreher MR; Höpfner M; Dewhirst MW; Secomb TW
    PLoS Comput Biol; 2009 May; 5(5):e1000394. PubMed ID: 19478883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli.
    Pries AR; Reglin B; Secomb TW
    Hypertension; 2005 Oct; 46(4):725-31. PubMed ID: 16172421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of a microvessel subject to structural adaptation of diameter and wall thickness.
    Shafer I; Nancollas R; Boes M; Sieminski AL; Geddes JB
    Math Med Biol; 2011 Sep; 28(3):271-86. PubMed ID: 20870949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous oscillations in a model for active control of microvessel diameters.
    Arciero JC; Secomb TW
    Math Med Biol; 2012 Jun; 29(2):163-80. PubMed ID: 21525236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural adaptation of microvascular networks: functional roles of adaptive responses.
    Pries AR; Reglin B; Secomb TW
    Am J Physiol Heart Circ Physiol; 2001 Sep; 281(3):H1015-25. PubMed ID: 11514266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of wall shear stress in microvascular network adaptation.
    Hudetz AG; Kiani MF
    Adv Exp Med Biol; 1992; 316():31-9. PubMed ID: 1288092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model of physical factors in the structural adaptation of microvascular networks in normotension and hypertension.
    Jacobsen JC; Gustafsson F; Holstein-Rathlou NH
    Physiol Meas; 2003 Nov; 24(4):891-912. PubMed ID: 14658781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal and spatial variations of wall shear stress in the entrance region of microvessels.
    Oulaid O; Zhang J
    J Biomech Eng; 2015 Jun; 137(6):061008. PubMed ID: 25781004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Ca2+ signaling in the microcirculation: intercellular communication and vasoreactivity.
    Kapela A; Nagaraja S; Parikh J; Tsoukias NM
    Crit Rev Biomed Eng; 2011; 39(5):435-60. PubMed ID: 22196162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of pulsatile flow-dependent nitric oxide regulation in a realistic microvascular network.
    Wang R; Pan Q; Kuebler WM; Li JK; Pries AR; Ning G
    Microvasc Res; 2017 Sep; 113():40-49. PubMed ID: 28478072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural adaptation and stability of microvascular networks: theory and simulations.
    Pries AR; Secomb TW; Gaehtgens P
    Am J Physiol; 1998 Aug; 275(2):H349-60. PubMed ID: 9683420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational model of intussusceptive microvascular growth and remodeling.
    Szczerba D; Kurz H; Szekely G
    J Theor Biol; 2009 Dec; 261(4):570-83. PubMed ID: 19766124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microcirculatory network structures and models.
    Pries AR; Secomb TW
    Ann Biomed Eng; 2000 Aug; 28(8):916-21. PubMed ID: 11144675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-free layer and wall shear stress variation in microvessels.
    Yin X; Zhang J
    Biorheology; 2012; 49(4):261-70. PubMed ID: 22836080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural adaptation of normal and tumour vascular networks.
    Secomb TW; Dewhirst MW; Pries AR
    Basic Clin Pharmacol Toxicol; 2012 Jan; 110(1):63-9. PubMed ID: 21995550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of angiogenesis in three dimensions: Application to cerebral cortex.
    Alberding JP; Secomb TW
    PLoS Comput Biol; 2021 Jun; 17(6):e1009164. PubMed ID: 34170925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.