These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 18802843)

  • 21. A hybrid discrete-continuum approach for modelling microcirculatory blood flow.
    Shipley RJ; Smith AF; Sweeney PW; Pries AR; Secomb TW
    Math Med Biol; 2020 Feb; 37(1):40-57. PubMed ID: 30892609
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural adaptation of microvascular networks and development of hypertension.
    Pries AR; Secomb TW
    Microcirculation; 2002; 9(4):305-14. PubMed ID: 12152106
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rheology of the microcirculation.
    Pries AR; Secomb TW
    Clin Hemorheol Microcirc; 2003; 29(3-4):143-8. PubMed ID: 14724335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimal occlusion uniformly partitions red blood cells fluxes within a microvascular network.
    Chang SS; Tu S; Baek KI; Pietersen A; Liu YH; Savage VM; Hwang SL; Hsiai TK; Roper M
    PLoS Comput Biol; 2017 Dec; 13(12):e1005892. PubMed ID: 29244812
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulation of microcirculatory hemodynamics: estimation of boundary condition using particle swarm optimization.
    Pan Q; Wang R; Reglin B; Fang L; Pries AR; Ning G
    Biomed Mater Eng; 2014; 24(6):2341-7. PubMed ID: 25226934
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic devices for modeling cell-cell and particle-cell interactions in the microvasculature.
    Prabhakarpandian B; Shen MC; Pant K; Kiani MF
    Microvasc Res; 2011 Nov; 82(3):210-20. PubMed ID: 21763328
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels.
    Alizadehrad D; Imai Y; Nakaaki K; Ishikawa T; Yamaguchi T
    J Biomech; 2012 Oct; 45(15):2684-9. PubMed ID: 22981440
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of mechanical stresses in microvascular remodeling.
    Skalak TC; Price RJ
    Microcirculation; 1996 Jun; 3(2):143-65. PubMed ID: 8839437
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural autoregulation of terminal vascular beds: vascular adaptation and development of hypertension.
    Pries AR; Secomb TW; Gaehtgens P
    Hypertension; 1999 Jan; 33(1):153-61. PubMed ID: 9931096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An adaptive fractal model for sublingual microcirculation.
    Jiang S; Li P; Shen Y; Yan M; Zhang J; Liu M; Ning G; Cai G
    Microvasc Res; 2021 Mar; 134():104101. PubMed ID: 33166577
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations.
    Hyakutake T; Nagai S
    Microvasc Res; 2015 Jan; 97():115-23. PubMed ID: 25446286
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting bifurcation angle effect on blood flow in the microvasculature.
    Yang J; Pak YE; Lee TR
    Microvasc Res; 2016 Nov; 108():22-8. PubMed ID: 27389627
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional distribution of wall shear stress and its gradient in red cell-resolved computational modeling of blood flow in in vivo-like microvascular networks.
    Balogh P; Bagchi P
    Physiol Rep; 2019 May; 7(9):e14067. PubMed ID: 31062494
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural adaptation of microvessel diameters in response to metabolic stimuli: where are the oxygen sensors?
    Reglin B; Secomb TW; Pries AR
    Am J Physiol Heart Circ Physiol; 2009 Dec; 297(6):H2206-19. PubMed ID: 19783778
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of nanoparticle binding dynamics in microcirculation using an adhesion probability function.
    Sohrabi S; Yunus DE; Xu J; Yang J; Liu Y
    Microvasc Res; 2016 Nov; 108():41-7. PubMed ID: 27423938
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A one-dimensional mathematical model for studying the pulsatile flow in microvascular networks.
    Pan Q; Wang R; Reglin B; Cai G; Yan J; Pries AR; Ning G
    J Biomech Eng; 2014 Jan; 136(1):011009. PubMed ID: 24190506
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A mathematical analysis of vasomotion in the peripheral vascular bed.
    Ursino M; Fabbri G; Belardinelli E
    Cardioscience; 1992 Mar; 3(1):13-25. PubMed ID: 1554867
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of blood vessel structure: insights from theoretical models.
    Pries AR; Secomb TW
    Am J Physiol Heart Circ Physiol; 2005 Mar; 288(3):H1010-5. PubMed ID: 15706037
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical mechanisms for thrombosis in microvessels.
    Lin Q; Mirc D; Fu BM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():83-6. PubMed ID: 17946781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.