These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 18803025)

  • 1. A comparative study of methanol as a supplementary carbon source for enhancing denitrification in primary and secondary anoxic zones.
    Ginige MP; Bowyer JC; Foley L; Keller J; Yuan Z
    Biodegradation; 2009 Apr; 20(2):221-34. PubMed ID: 18803025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms.
    Kishida N; Kim J; Tsuneda S; Sudo R
    Water Res; 2006 Jul; 40(12):2303-10. PubMed ID: 16766009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sequencing batch reactor system for high-level biological nitrogen and phosphorus removal from abattoir wastewater.
    Lemaire R; Yuan Z; Bernet N; Marcos M; Yilmaz G; Keller J
    Biodegradation; 2009 Jun; 20(3):339-50. PubMed ID: 18937035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a 2-sludge, 3-stage system for nitrogen and phosphorous removal from nutrient-rich wastewater using granular sludge and biofilms.
    Zhou Y; Pijuan M; Yuan Z
    Water Res; 2008 Jun; 42(12):3207-17. PubMed ID: 18472126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of denitrification by denitrifying phosphorus removing bacteria using sequentially combined carbon.
    Cho ES; Ahn KH; Molof AH
    Water Sci Technol; 2004; 50(8):33-40. PubMed ID: 15566184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancing post-anoxic denitrification for biological nutrient removal.
    Winkler M; Coats ER; Brinkman CK
    Water Res; 2011 Nov; 45(18):6119-30. PubMed ID: 21937071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixed carbon sources for nitrate reduction in activated sludge-identification of bacteria and process activity studies.
    Hagman M; Nielsen JL; Nielsen PH; Jansen Jl
    Water Res; 2008 Mar; 42(6-7):1539-46. PubMed ID: 18061233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of sequentially combined carbon with sole carbon in denitrification and biological phosphorus removal.
    Cho ES; Ahn KH; Molof AH
    Water Sci Technol; 2004; 49(5-6):251-6. PubMed ID: 15137431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autotrophic nitrogen removal in sequencing batch biofilm reactors at different oxygen supply modes.
    Wantawin C; Juateea J; Noophan PL; Munakata-Marr J
    Water Sci Technol; 2008; 58(10):1889-94. PubMed ID: 19039166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of sequentially combining methanol and acetic acid on the performance of biological nitrogen and phosphorus removal.
    Cho E; Molof AH
    J Environ Manage; 2004 Nov; 73(3):183-7. PubMed ID: 15474735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial distribution of Accumulibacter spp. and Competibacter spp. in aerobic granules from a lab-scale biological nutrient removal system.
    Lemaire R; Yuan Z; Blackall LL; Crocetti GR
    Environ Microbiol; 2008 Feb; 10(2):354-63. PubMed ID: 18028415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon mass balance and microbial ecology in a laboratory scale reactor achieving simultaneous sludge reduction and nutrient removal.
    Huang P; Li L; Kotay SM; Goel R
    Water Res; 2014 Apr; 53():153-67. PubMed ID: 24525065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Denitrification with endogenous carbon source at low C/N and its effect on P(3HB) accumulation.
    Bernat K; Wojnowska-Baryła I; Dobrzyńska A
    Bioresour Technol; 2008 May; 99(7):2410-8. PubMed ID: 17596935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological treatment of shrimp aquaculture wastewater using a sequencing batch reactor.
    Lyles C; Boopathy R; Fontenot Q; Kilgen M
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):474-9. PubMed ID: 18561032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing denitrification kinetics at cold temperature using various carbon sources in lab-scale sequencing batch reactors.
    Mokhayeri Y; Riffat R; Takacs I; Dold P; Bott C; Hinojosa J; Bailey W; Murthy S
    Water Sci Technol; 2008; 58(1):233-8. PubMed ID: 18653959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emission and control of nitrous oxide from a biological wastewater treatment system with intermittent aeration.
    Park KY; Inamori Y; Mizuochi M; Ahn KH
    J Biosci Bioeng; 2000; 90(3):247-52. PubMed ID: 16232852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Balancing yield, kinetics and cost for three external carbon sources used for suspended growth post-denitrification.
    Mokhayeri Y; Riffat R; Murthy S; Bailey W; Takacs I; Bott C
    Water Sci Technol; 2009; 60(10):2485-91. PubMed ID: 19923753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Denitrifying phosphorus removal: linking the process performance with the microbial community structure.
    Carvalho G; Lemos PC; Oehmen A; Reis MA
    Water Res; 2007 Nov; 41(19):4383-96. PubMed ID: 17669460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. External carbon feeding strategy for enhancing nitrogen removal in SBR.
    Jun BH; Poo KM; Im JH; Kim JR; Woo HJ; Kim CW
    Water Sci Technol; 2004; 49(5-6):325-31. PubMed ID: 15137441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological nitrogen and phosphorus removal and changes in microbial community structure in a membrane bioreactor: effect of different carbon sources.
    Ahmed Z; Lim BR; Cho J; Song KG; Kim KP; Ahn KH
    Water Res; 2008 Jan; 42(1-2):198-210. PubMed ID: 17640701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.