These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 18803095)

  • 21. Understanding recumbent cycling: instrumentation design and biomechanical analysis.
    Reiser RF; Peterson ML; Broker JP
    Biomed Sci Instrum; 2002; 38():209-14. PubMed ID: 12085603
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomechanical and physiological aspects of legged locomotion in humans.
    Saibene F; Minetti AE
    Eur J Appl Physiol; 2003 Jan; 88(4-5):297-316. PubMed ID: 12527959
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relative metabolic efficiency of concentric and eccentric exercise determined by 31P magnetic resonance spectroscopy.
    Menard MR; Penn AM; Lee JW; Dusik LA; Hall LD
    Arch Phys Med Rehabil; 1991 Nov; 72(12):976-83. PubMed ID: 1953321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Giant Galapagos tortoises walk without inverted pendulum mechanical-energy exchange.
    Zani PA; Gottschall JS; Kram R
    J Exp Biol; 2005 Apr; 208(Pt 8):1489-94. PubMed ID: 15802673
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The mechanisms for minimizing energy expenditure in human locomotion.
    Saibene F
    Eur J Clin Nutr; 1990; 44 Suppl 1():65-71. PubMed ID: 2193805
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sprint running: a new energetic approach.
    di Prampero PE; Fusi S; Sepulcri L; Morin JB; Belli A; Antonutto G
    J Exp Biol; 2005 Jul; 208(Pt 14):2809-16. PubMed ID: 16000549
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recumbent vs. upright bicycles: 3D trajectory of body centre of mass, limb mechanical work, and operative range of propulsive muscles.
    Telli R; Seminati E; Pavei G; Minetti AE
    J Sports Sci; 2017 Mar; 35(5):491-499. PubMed ID: 27103353
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical power and efficiency of level walking with different stride rates.
    Umberger BR; Martin PE
    J Exp Biol; 2007 Sep; 210(Pt 18):3255-65. PubMed ID: 17766303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of mechanical work and metabolic energy consumption during normal gait.
    Burdett RG; Skrinar GS; Simon SR
    J Orthop Res; 1983; 1(1):63-72. PubMed ID: 6679577
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiologic aspects of bicycling.
    Ryschon TW
    Clin Sports Med; 1994 Jan; 13(1):15-38. PubMed ID: 8111849
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The energy cost for the step-to-step transition in amputee walking.
    Houdijk H; Pollmann E; Groenewold M; Wiggerts H; Polomski W
    Gait Posture; 2009 Jul; 30(1):35-40. PubMed ID: 19321343
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crank inertial load has little effect on steady-state pedaling coordination.
    Fregly BJ; Zajac FE; Dairaghi CA
    J Biomech; 1996 Dec; 29(12):1559-67. PubMed ID: 8945654
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the biomechanics of cycling. A study of joint and muscle load during exercise on the bicycle ergometer.
    Ericson M
    Scand J Rehabil Med Suppl; 1986; 16():1-43. PubMed ID: 3468609
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physiological determinants of best performances in human locomotion.
    Capelli C
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):298-307. PubMed ID: 10483799
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy cost of graded work loads & mechanical efficiency of sportsmen.
    Venkataramana Y; Rao MS; Rao SS; Satyanarayana K
    Indian J Med Res; 1995 Mar; 101():120-4. PubMed ID: 7751040
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energy cost and efficiency of riding aerodynamic bicycles.
    Capelli C; Rosa G; Butti F; Ferretti G; Veicsteinas A; di Prampero PE
    Eur J Appl Physiol Occup Physiol; 1993; 67(2):144-9. PubMed ID: 8223520
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Locomotion on a slope in leaf-cutter ants: metabolic energy use, behavioural adaptations and the implications for route selection on hilly terrain.
    Holt NC; Askew GN
    J Exp Biol; 2012 Aug; 215(Pt 15):2545-50. PubMed ID: 22786630
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Developing norms for manual carrying tasks using mechanical efficiency as the optimization criterion.
    Dutta SP; Taboun S
    Ergonomics; 1989 Aug; 32(8):919-43. PubMed ID: 2806224
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioenergetics and Biomechanics of Handcycling at Submaximal Speeds in Athletes with a Spinal Cord Injury.
    Fischer G; Figueiredo P; Ardigò LP
    Sports (Basel); 2020 Jan; 8(2):. PubMed ID: 32013128
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Harvesting energy from the counterbalancing (weaving) movement in bicycle riding.
    Yang Y; Yeo J; Priya S
    Sensors (Basel); 2012; 12(8):10248-58. PubMed ID: 23112598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.