These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 18803176)

  • 1. Simple synthesis of multiwalled carbon nanotubes from natural resources.
    Endo M; Takeuchi K; Kim YA; Park KC; Ichiki T; Hayashi T; Fukuyo T; Iinou S; Su DS; Terrones M; Dresselhaus MS
    ChemSusChem; 2008; 1(10):820-2. PubMed ID: 18803176
    [No Abstract]   [Full Text] [Related]  

  • 2. Role of subsurface diffusion and Ostwald ripening in catalyst formation for single-walled carbon nanotube forest growth.
    Sakurai S; Nishino H; Futaba DN; Yasuda S; Yamada T; Maigne A; Matsuo Y; Nakamura E; Yumura M; Hata K
    J Am Chem Soc; 2012 Feb; 134(4):2148-53. PubMed ID: 22233092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sonochemical route to single-walled carbon nanotubes under ambient conditions.
    Jeong SH; Ko JH; Park JB; Park W
    J Am Chem Soc; 2004 Dec; 126(49):15982-3. PubMed ID: 15584730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts.
    Zhao B; Futaba DN; Yasuda S; Akoshima M; Yamada T; Hata K
    ACS Nano; 2009 Jan; 3(1):108-14. PubMed ID: 19206256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid microstructures from aligned carbon nanotubes and silica particles.
    Agrawal S; Kumar A; Frederick MJ; Ramanath G
    Small; 2005 Aug; 1(8-9):823-6. PubMed ID: 17193532
    [No Abstract]   [Full Text] [Related]  

  • 6. Selective chemical vapor deposition synthesis of double-wall carbon nanotubes on mesoporous silica.
    Ramesh P; Okazaki T; Taniguchi R; Kimura J; Sugai T; Sato K; Ozeki Y; Shinohara H
    J Phys Chem B; 2005 Jan; 109(3):1141-7. PubMed ID: 16851073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the outskirts of Fe and Co catalyst particles in alumina-supported catalytic CVD carbon nanotube growth.
    Rümmeli MH; Schäffel F; Bachmatiuk A; Adebimpe D; Trotter G; Börrnert F; Scott A; Coric E; Sparing M; Rellinghaus B; McCormick PG; Cuniberti G; Knupfer M; Schultz L; Büchner B
    ACS Nano; 2010 Feb; 4(2):1146-52. PubMed ID: 20088596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of multi-walled carbon nanotubes by nebulized spray pyrolysis of a natural precursor: alpha-pinene.
    Lara-Romero J; Alonso-Núñez G; Jiménez-Sandoval S; Avalos-Borja M
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6509-12. PubMed ID: 19205231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermogravimetric analysis of synthesis variation effects on CVD generated multiwalled carbon nanotubes.
    McKee GS; Vecchio KS
    J Phys Chem B; 2006 Jan; 110(3):1179-86. PubMed ID: 16471661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relevant synthesis parameters for the sequential catalytic growth of carbon nanotubes.
    Jourdain V; Paillet M; Almairac R; Loiseau A; Bernier P
    J Phys Chem B; 2005 Feb; 109(4):1380-6. PubMed ID: 16851106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of high-purity metal-catalyst-free multiwalled carbon nanotubes to avoid potential experimental misinterpretations.
    Jones CP; Jurkschat K; Crossley A; Compton RG; Riehl BL; Banks CE
    Langmuir; 2007 Aug; 23(18):9501-4. PubMed ID: 17655265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Syndiotactic polystyrene nanofibrils in silica nanotube reactors: understanding of synthesis with ultrahigh molecular weight.
    Choi KY; Han JJ; He B; Lee SB
    J Am Chem Soc; 2008 Mar; 130(12):3920-6. PubMed ID: 18303889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanotubes grafted on silicon oxide nanowires.
    Meng G; Cao A; Cheng JY; Ajayan PM
    J Nanosci Nanotechnol; 2004 Sep; 4(7):712-5. PubMed ID: 15570949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable thermoresponsive water-dispersed multiwalled carbon nanotubes.
    Chen G; Wright PM; Geng J; Mantovani G; Haddleton DM
    Chem Commun (Camb); 2008 Mar; (9):1097-9. PubMed ID: 18292902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the volumetric parameters of nitrogen-doped carbon nanotube cups.
    Allen BL; Keddie MB; Star A
    Nanoscale; 2010 Jul; 2(7):1105-8. PubMed ID: 20644782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetophoretic continuous purification of single-walled carbon nanotubes from catalytic impurities in a microfluidic device.
    Kang JH; Park JK
    Small; 2007 Oct; 3(10):1784-91. PubMed ID: 17890645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical derivatisation of multiwalled carbon nanotubes using diazonium salts.
    Heald CG; Wildgoose GG; Jiang L; Jones TG; Compton RG
    Chemphyschem; 2004 Nov; 5(11):1794-9. PubMed ID: 15580944
    [No Abstract]   [Full Text] [Related]  

  • 18. Carbon nanotubes encapsulated in wormlike hollow silica shells.
    Grzelczak M; Correa-Duarte MA; Liz-Marzán LM
    Small; 2006 Oct; 2(10):1174-7. PubMed ID: 17193585
    [No Abstract]   [Full Text] [Related]  

  • 19. Biomimetic mineralization of vertical N-doped carbon nanotubes.
    Lee WJ; Lee DH; Han TH; Lee SH; Moon HS; Lee JA; Kim SO
    Chem Commun (Camb); 2011 Jan; 47(1):535-7. PubMed ID: 21079868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of heterostructured helical carbon nanotubes by iron-catalyzed ethanol decomposition.
    Yong Z; Fang L; Zhi-hua Z
    Micron; 2011 Aug; 42(6):547-52. PubMed ID: 21376608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.