These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 18803243)

  • 1. Conformational implications of an inversed pH-dependent antibody aggregation.
    Perico N; Purtell J; Dillon TM; Ricci MS
    J Pharm Sci; 2009 Sep; 98(9):3031-42. PubMed ID: 18803243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidation of two major aggregation pathways in an IgG2 antibody.
    Van Buren N; Rehder D; Gadgil H; Matsumura M; Jacob J
    J Pharm Sci; 2009 Sep; 98(9):3013-30. PubMed ID: 18680168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting accelerated aggregation rates for monoclonal antibody formulations, and challenges for low-temperature predictions.
    Brummitt RK; Nesta DP; Roberts CJ
    J Pharm Sci; 2011 Oct; 100(10):4234-43. PubMed ID: 21671226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examination of thermal unfolding and aggregation profiles of a series of developable therapeutic monoclonal antibodies.
    Brader ML; Estey T; Bai S; Alston RW; Lucas KK; Lantz S; Landsman P; Maloney KM
    Mol Pharm; 2015 Apr; 12(4):1005-17. PubMed ID: 25687223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the Aggregation Kinetics of a Therapeutic Antibody Fragment.
    Chakroun N; Hilton D; Ahmad SS; Platt GW; Dalby PA
    Mol Pharm; 2016 Feb; 13(2):307-19. PubMed ID: 26692229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonnative aggregation of an IgG1 antibody in acidic conditions, part 2: nucleation and growth kinetics with competing growth mechanisms.
    Brummitt RK; Nesta DP; Chang L; Kroetsch AM; Roberts CJ
    J Pharm Sci; 2011 Jun; 100(6):2104-19. PubMed ID: 21213307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of acid exposure on the conformation, stability, and aggregation of monoclonal antibodies.
    Ejima D; Tsumoto K; Fukada H; Yumioka R; Nagase K; Arakawa T; Philo JS
    Proteins; 2007 Mar; 66(4):954-62. PubMed ID: 17154421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the relevance of local conformational stability and dynamics to the aggregation propensity of an IgG1 and IgG2 monoclonal antibodies.
    Thakkar SV; Sahni N; Joshi SB; Kerwin BA; He F; Volkin DB; Middaugh CR
    Protein Sci; 2013 Oct; 22(10):1295-305. PubMed ID: 23893936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlations between changes in conformational dynamics and physical stability in a mutant IgG1 mAb engineered for extended serum half-life.
    Majumdar R; Esfandiary R; Bishop SM; Samra HS; Middaugh CR; Volkin DB; Weis DD
    MAbs; 2015; 7(1):84-95. PubMed ID: 25524268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aggregation and pH-temperature phase behavior for aggregates of an IgG2 antibody.
    Sahin E; Weiss WF; Kroetsch AM; King KR; Kessler RK; Das TK; Roberts CJ
    J Pharm Sci; 2012 May; 101(5):1678-87. PubMed ID: 22246657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput screening and stability optimization of anti-streptavidin IgG1 and IgG2 formulations.
    Alekseychyk L; Su C; Becker GW; Treuheit MJ; Razinkov VI
    J Biomol Screen; 2014 Oct; 19(9):1290-301. PubMed ID: 25023322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation of Colloidal and Conformational Stabilities to Aggregate Formation in a Monoclonal Antibody.
    Oyama H; Koga H; Tadokoro T; Maenaka K; Shiota A; Yokoyama M; Noda M; Torisu T; Uchiyama S
    J Pharm Sci; 2020 Jan; 109(1):308-315. PubMed ID: 31669120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerated Aggregation Studies of Monoclonal Antibodies: Considerations for Storage Stability.
    Wälchli R; Vermeire PJ; Massant J; Arosio P
    J Pharm Sci; 2020 Jan; 109(1):595-602. PubMed ID: 31676272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of temperature and osmolytes on competing degradation routes for an IgG1 antibody.
    Roberts CJ; Nesta DP; Kim N
    J Pharm Sci; 2013 Oct; 102(10):3556-66. PubMed ID: 23873602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agitation-induced aggregation and subvisible particulate formation in model proteins.
    Jayaraman M; Buck PM; Ignatius AA; King KR; Wang W
    Eur J Pharm Biopharm; 2014 Jul; 87(2):299-309. PubMed ID: 24462794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonnative aggregation of an IgG1 antibody in acidic conditions: part 1. Unfolding, colloidal interactions, and formation of high-molecular-weight aggregates.
    Brummitt RK; Nesta DP; Chang L; Chase SF; Laue TM; Roberts CJ
    J Pharm Sci; 2011 Jun; 100(6):2087-103. PubMed ID: 21213308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High throughput thermostability screening of monoclonal antibody formulations.
    He F; Hogan S; Latypov RF; Narhi LO; Razinkov VI
    J Pharm Sci; 2010 Apr; 99(4):1707-20. PubMed ID: 19780136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formulation design and high-throughput excipient selection based on structural integrity and conformational stability of dilute and highly concentrated IgG1 monoclonal antibody solutions.
    Bhambhani A; Kissmann JM; Joshi SB; Volkin DB; Kashi RS; Middaugh CR
    J Pharm Sci; 2012 Mar; 101(3):1120-35. PubMed ID: 22147527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic rheology of a monoclonal antibody (IgG2) solution: implications for physical stability of proteins in high concentration formulations.
    Saluja A; Badkar AV; Zeng DL; Kalonia DS
    J Pharm Sci; 2007 Dec; 96(12):3181-95. PubMed ID: 17588261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of solvent environment on the conformation and stability of human polyclonal IgG in solution.
    Szenczi A; Kardos J; Medgyesi GA; Závodszky P
    Biologicals; 2006 Mar; 34(1):5-14. PubMed ID: 16168667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.