BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 18803288)

  • 1. Clinical implication of recurrent copy number alterations in hepatocellular carcinoma and putative oncogenes in recurrent gains on 1q.
    Kim TM; Yim SH; Shin SH; Xu HD; Jung YC; Park CK; Choi JY; Park WS; Kwon MS; Fiegler H; Carter NP; Rhyu MG; Chung YJ
    Int J Cancer; 2008 Dec; 123(12):2808-15. PubMed ID: 18803288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Array-based comparative genomic hybridization reveals recurrent chromosomal aberrations and Jab1 as a potential target for 8q gain in hepatocellular carcinoma.
    Patil MA; Gütgemann I; Zhang J; Ho C; Cheung ST; Ginzinger D; Li R; Dykema KJ; So S; Fan ST; Kakar S; Furge KA; Büttner R; Chen X
    Carcinogenesis; 2005 Dec; 26(12):2050-7. PubMed ID: 16000397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TERT promoter mutations and chromosome 8p loss are characteristic of nonalcoholic fatty liver disease-related hepatocellular carcinoma.
    Ki Kim S; Ueda Y; Hatano E; Kakiuchi N; Takeda H; Goto T; Shimizu T; Yoshida K; Ikura Y; Shiraishi Y; Chiba K; Tanaka H; Miyano S; Uemoto S; Chiba T; Ogawa S; Marusawa H
    Int J Cancer; 2016 Dec; 139(11):2512-8. PubMed ID: 27511114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allelic imbalances and homozygous deletion on 8p23.2 for stepwise progression of hepatocarcinogenesis.
    Midorikawa Y; Yamamoto S; Tsuji S; Kamimura N; Ishikawa S; Igarashi H; Makuuchi M; Kokudo N; Sugimura H; Aburatani H
    Hepatology; 2009 Feb; 49(2):513-22. PubMed ID: 19105209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrete breakpoint mapping and shortest region of overlap of chromosome arm 1q gain and 1p loss in human hepatocellular carcinoma detected by semiquantitative microsatellite analysis.
    Nishimura T; Nishida N; Itoh T; Komeda T; Fukuda Y; Ikai I; Yamaoka Y; Nakao K
    Genes Chromosomes Cancer; 2005 Jan; 42(1):34-43. PubMed ID: 15495198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of four distinct regions of allelic imbalances on chromosome 1 by the combined comparative genomic hybridization and microsatellite analysis on hepatocellular carcinoma.
    Leung TH; Wong N; Lai PB; Chan A; To KF; Liew CT; Lau WY; Johnson PJ
    Mod Pathol; 2002 Nov; 15(11):1213-20. PubMed ID: 12429801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of differentiation and progression of hepatic tumors using array-based comparative genomic hybridization.
    Steinemann D; Skawran B; Becker T; Tauscher M; Weigmann A; Wingen L; Tauscher S; Hinrichsen T; Hertz S; Flemming P; Flik J; Wiese B; Kreipe H; Lichter P; Schlegelberger B; Wilkens L
    Clin Gastroenterol Hepatol; 2006 Oct; 4(10):1283-91. PubMed ID: 16979954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oncogenetic tree modeling of human hepatocarcinogenesis.
    Longerich T; Mueller MM; Breuhahn K; Schirmacher P; Benner A; Heiss C
    Int J Cancer; 2012 Feb; 130(3):575-83. PubMed ID: 21400513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recurrent chromosome alterations in hepatocellular carcinoma detected by comparative genomic hybridization.
    Guan XY; Fang Y; Sham JS; Kwong DL; Zhang Y; Liang Q; Li H; Zhou H; Trent JM
    Genes Chromosomes Cancer; 2000 Oct; 29(2):110-6. PubMed ID: 10959090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Y chromosome loss and other genomic alterations in hepatocellular carcinoma cell lines analyzed by CGH and CGH array.
    Park SJ; Jeong SY; Kim HJ
    Cancer Genet Cytogenet; 2006 Apr; 166(1):56-64. PubMed ID: 16616112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Etiology-dependent molecular mechanisms in human hepatocarcinogenesis.
    Schlaeger C; Longerich T; Schiller C; Bewerunge P; Mehrabi A; Toedt G; Kleeff J; Ehemann V; Eils R; Lichter P; Schirmacher P; Radlwimmer B
    Hepatology; 2008 Feb; 47(2):511-20. PubMed ID: 18161050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Panel of Genes Identified as Targets for 8q24.13-24.3 Gain Contributing to Unfavorable Overall Survival in Patients with Hepatocellular Carcinoma.
    Zhao K; Zhao Y; Zhu JY; Dong H; Cong WM; Yu Y; Wang H; Zhu ZZ; Xu Q
    Curr Med Sci; 2018 Aug; 38(4):590-596. PubMed ID: 30128866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A copy number gain of the 6p arm is linked with advanced hepatocellular carcinoma: an array-based comparative genomic hybridization study.
    Chochi Y; Kawauchi S; Nakao M; Furuya T; Hashimoto K; Oga A; Oka M; Sasaki K
    J Pathol; 2009 Apr; 217(5):677-84. PubMed ID: 19097070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PTK2 and EIF3S3 genes may be amplification targets at 8q23-q24 and are associated with large hepatocellular carcinomas.
    Okamoto H; Yasui K; Zhao C; Arii S; Inazawa J
    Hepatology; 2003 Nov; 38(5):1242-9. PubMed ID: 14578863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide semiquantitative microsatellite analysis of human hepatocellular carcinoma: discrete mapping of smallest region of overlap of recurrent chromosomal gains and losses.
    Nishimura T; Nishida N; Komeda T; Fukuda Y; Ikai I; Yamaoka Y; Nakao K
    Cancer Genet Cytogenet; 2006 May; 167(1):57-65. PubMed ID: 16682288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulator of Calcineurin 1 Gene Isoform 4, Down-regulated in Hepatocellular Carcinoma, Prevents Proliferation, Migration, and Invasive Activity of Cancer Cells and Metastasis of Orthotopic Tumors by Inhibiting Nuclear Translocation of NFAT1.
    Jin H; Wang C; Jin G; Ruan H; Gu D; Wei L; Wang H; Wang N; Arunachalam E; Zhang Y; Deng X; Yang C; Xiong Y; Feng H; Yao M; Fang J; Gu J; Cong W; Qin W
    Gastroenterology; 2017 Sep; 153(3):799-811.e33. PubMed ID: 28583823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct chromosomal bias of gene expression signatures in the progression of hepatocellular carcinoma.
    Midorikawa Y; Tsutsumi S; Nishimura K; Kamimura N; Kano M; Sakamoto H; Makuuchi M; Aburatani H
    Cancer Res; 2004 Oct; 64(20):7263-70. PubMed ID: 15492245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular cytogenetic evaluation of virus-associated and non-viral hepatocellular carcinoma: analysis of 26 carcinomas and 12 concurrent dysplasias.
    Zondervan PE; Wink J; Alers JC; IJzermans JN; Schalm SW; de Man RA; van Dekken H
    J Pathol; 2000 Oct; 192(2):207-15. PubMed ID: 11004697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased Expression of Fructose-1,6-bisphosphatase Associates with Glucose Metabolism and Tumor Progression in Hepatocellular Carcinoma.
    Hirata H; Sugimachi K; Komatsu H; Ueda M; Masuda T; Uchi R; Sakimura S; Nambara S; Saito T; Shinden Y; Iguchi T; Eguchi H; Ito S; Terashima K; Sakamoto K; Hirakawa M; Honda H; Mimori K
    Cancer Res; 2016 Jun; 76(11):3265-76. PubMed ID: 27197151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Downregulation of KIF1B mRNA in hepatocellular carcinoma tissues correlates with poor prognosis.
    Yang SZ; Wang JT; Yu WW; Liu Q; Wu YF; Chen SG
    World J Gastroenterol; 2015 Jul; 21(27):8418-24. PubMed ID: 26217094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.