These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 18803370)

  • 1. Modeling oral rat chronic toxicity.
    Mazzatorta P; Estevez MD; Coulet M; Schilter B
    J Chem Inf Model; 2008 Oct; 48(10):1949-54. PubMed ID: 18803370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating the safe starting dose in phase I clinical trials and no observed effect level based on QSAR modeling of the human maximum recommended daily dose.
    Contrera JF; Matthews EJ; Kruhlak NL; Benz RD
    Regul Toxicol Pharmacol; 2004 Dec; 40(3):185-206. PubMed ID: 15546675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico toxicology for the pharmaceutical sciences.
    Valerio LG
    Toxicol Appl Pharmacol; 2009 Dec; 241(3):356-70. PubMed ID: 19716836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variable selection and interpretation in structure-affinity correlation modeling of estrogen receptor binders.
    Marini F; Roncaglioni A; Novic M
    J Chem Inf Model; 2005; 45(6):1507-19. PubMed ID: 16309247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical analysis of methods for assessment of predicted no-effect concentration.
    Roman G; Isnard P; Jouany J
    Ecotoxicol Environ Saf; 1999 Jun; 43(2):117-25. PubMed ID: 10375413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection.
    Tetko IV; Sushko I; Pandey AK; Zhu H; Tropsha A; Papa E; Oberg T; Todeschini R; Fourches D; Varnek A
    J Chem Inf Model; 2008 Sep; 48(9):1733-46. PubMed ID: 18729318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mode of action-based local QSAR modeling for the prediction of acute toxicity in the fathead minnow.
    Yuan H; Wang YY; Cheng YY
    J Mol Graph Model; 2007 Jul; 26(1):327-35. PubMed ID: 17224289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust cross-validation of linear regression QSAR models.
    Konovalov DA; Llewellyn LE; Vander Heyden Y; Coomans D
    J Chem Inf Model; 2008 Oct; 48(10):2081-94. PubMed ID: 18826208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of toxicity of nitrobenzenes using ab initio and least squares support vector machines.
    Niazi A; Jameh-Bozorghi S; Nori-Shargh D
    J Hazard Mater; 2008 Mar; 151(2-3):603-9. PubMed ID: 17630186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethyl methanesulfonate toxicity in Viracept--a comprehensive human risk assessment based on threshold data for genotoxicity.
    Müller L; Gocke E; Lavé T; Pfister T
    Toxicol Lett; 2009 Nov; 190(3):317-29. PubMed ID: 19443141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel QSPR study of normalized migration time for drugs in capillary electrophoresis by new descriptors: quantum chemical investigation.
    Riahi S; Beheshti A; Ganjali MR; Norouzi P
    Electrophoresis; 2008 Oct; 29(19):4027-35. PubMed ID: 18958895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the performances of quantitative structure-retention relationship models with different sets of molecular descriptors and databases for high-performance liquid chromatography predictions.
    Wang C; Skibic MJ; Higgs RE; Watson IA; Bui H; Wang J; Cintron JM
    J Chromatogr A; 2009 Jun; 1216(25):5030-8. PubMed ID: 19439313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of 31P nuclear magnetic resonance chemical shifts for phosphines.
    Tong J; Liu S; Zhang S; Li SZ
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jul; 67(3-4):837-46. PubMed ID: 17258501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of computer-assisted prediction of toxic effects of chemical substances.
    Simon-Hettich B; Rothfuss A; Steger-Hartmann T
    Toxicology; 2006 Jul; 224(1-2):156-62. PubMed ID: 16707203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QSTR with extended topochemical atom (ETA) indices. 12. QSAR for the toxicity of diverse aromatic compounds to Tetrahymena pyriformis using chemometric tools.
    Roy K; Ghosh G
    Chemosphere; 2009 Nov; 77(7):999-1009. PubMed ID: 19709717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-MEDNEs: an alternative "in silico" technique for chemical research in toxicology. 2. quantitative proteome-toxicity relationships (QPTR) based on mass spectrum spiral entropy.
    Cruz-Monteagudo M; González-Díaz H; Borges F; Dominguez ER; Cordeiro MN
    Chem Res Toxicol; 2008 Mar; 21(3):619-32. PubMed ID: 18257557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical characterization of gas-liquid chromatographic stationary phases with quantum chemical descriptors.
    Hoffmann EA; Fekete ZA; Rajkó R; Pálinkó I; Körtvélyesi T
    J Chromatogr A; 2009 Mar; 1216(12):2540-7. PubMed ID: 19195662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of HPLC retention index using artificial neural networks and IGroup E-state indices.
    Albaugh DR; Hall LM; Hill DW; Kertesz TM; Parham M; Hall LH; Grant DF
    J Chem Inf Model; 2009 Apr; 49(4):788-99. PubMed ID: 19309176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative structure-activity relationship (QSAR) modeling of human blood: air partitioning with proper statistical methods and validation.
    Basak SC; Mills D; Hawkins DM; Kraker JJ
    Chem Biodivers; 2009 Apr; 6(4):487-502. PubMed ID: 19353545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.