BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 18803373)

  • 1. Iron(III) uptake and release by chrysobactin, a siderophore of the phytophatogenic bacterium Erwinia chrysanthemi.
    Tomisić V; Blanc S; Elhabiri M; Expert D; Albrecht-Gary AM
    Inorg Chem; 2008 Oct; 47(20):9419-30. PubMed ID: 18803373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferric iron uptake in Erwinia chrysanthemi mediated by chrysobactin and related catechol-type compounds.
    Persmark M; Expert D; Neilands JB
    J Bacteriol; 1992 Jul; 174(14):4783-9. PubMed ID: 1624465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron(III) complexes of chrysobactin, the siderophore of Erwinia chrysanthemi.
    Persmark M; Neilands JB
    Biometals; 1992; 5(1):29-36. PubMed ID: 1392469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection.
    Franza T; Mahé B; Expert D
    Mol Microbiol; 2005 Jan; 55(1):261-75. PubMed ID: 15612933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential expression of two siderophore-dependent iron-acquisition pathways in Erwinia chrysanthemi 3937: characterization of a novel ferrisiderophore permease of the ABC transporter family.
    Mahé B; Masclaux C; Rauscher L; Enard C; Expert D
    Mol Microbiol; 1995 Oct; 18(1):33-43. PubMed ID: 8596459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial iron transport: coordination properties of azotobactin, the highly fluorescent siderophore of Azotobacter vinelandii.
    Palanché T; Blanc S; Hennard C; Abdallah MA; Albrecht-Gary AM
    Inorg Chem; 2004 Feb; 43(3):1137-52. PubMed ID: 14753838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, siderophore activity and iron(III) chelation chemistry of a novel mono-hydroxamate, bis-catecholate siderophore mimic: N(alpha),-N(epsilon)-Bis[2,3-dihydroxybenzoyl]-l-lysyl-(gamma-N-methyl-N-hydroxyamido)-L-glutamic acid.
    Mies KA; Gebhardt P; Möllmann U; Crumbliss AL
    J Inorg Biochem; 2008 Apr; 102(4):850-61. PubMed ID: 18272225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of optically pure chrysobactin and immunoassay development.
    Lu C; Buyer JS; Okonya JF; Miller MJ
    Biometals; 1996 Oct; 9(4):377-83. PubMed ID: 8837459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chrysobactin-dependent iron acquisition in Erwinia chrysanthemi. Functional study of a homolog of the Escherichia coli ferric enterobactin esterase.
    Rauscher L; Expert D; Matzanke BF; Trautwein AX
    J Biol Chem; 2002 Jan; 277(4):2385-95. PubMed ID: 11694506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Siderophore-mediated upregulation of Arabidopsis ferritin expression in response to Erwinia chrysanthemi infection.
    Dellagi A; Rigault M; Segond D; Roux C; Kraepiel Y; Cellier F; Briat JF; Gaymard F; Expert D
    Plant J; 2005 Jul; 43(2):262-72. PubMed ID: 15998312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Siderophore-controlled iron assimilation in the enterobacterium Erwinia chrysanthemi: evidence for the involvement of bacterioferritin and the Suf iron-sulfur cluster assembly machinery.
    Expert D; Boughammoura A; Franza T
    J Biol Chem; 2008 Dec; 283(52):36564-72. PubMed ID: 18990691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a tonB mutation in Erwinia chrysanthemi 3937: TonB(Ech) is a member of the enterobacterial TonB family.
    Enard C; Expert D
    Microbiology (Reading); 2000 Aug; 146 ( Pt 8)():2051-2058. PubMed ID: 10931909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron chelation properties of an extracellular siderophore exochelin MN.
    Dhungana S; Miller MJ; Dong L; Ratledge C; Crumbliss AL
    J Am Chem Soc; 2003 Jun; 125(25):7654-63. PubMed ID: 12812507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron(III) coordination properties of a pyoverdin siderophore produced by Pseudomonas putida ATCC 33015.
    Boukhalfa H; Reilly SD; Michalczyk R; Iyer S; Neu MP
    Inorg Chem; 2006 Jul; 45(14):5607-16. PubMed ID: 16813425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The virulence-associated chrysobactin iron uptake system of Erwinia chrysanthemi 3937 involves an operon encoding transport and biosynthetic functions.
    Franza T; Expert D
    J Bacteriol; 1991 Nov; 173(21):6874-81. PubMed ID: 1657869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation, characterization, and synthesis of chrysobactin, a compound with siderophore activity from Erwinia chrysanthemi.
    Persmark M; Expert D; Neilands JB
    J Biol Chem; 1989 Feb; 264(6):3187-93. PubMed ID: 2914949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron(III) complexation by Vanchrobactin, a siderophore of the bacterial fish pathogen Vibrio anguillarum.
    Iglesias E; Brandariz I; Jiménez C; Soengas RG
    Metallomics; 2011 May; 3(5):521-8. PubMed ID: 21494744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic, potentiometric and spectroscopic studies of chelation between Fe(III) and 2,5-DHBA supports salicylate-mode of siderophore binding interactions.
    Porwal SK; Furia E; Harris ME; Viswanathan R; Devireddy L
    J Inorg Biochem; 2015 Apr; 145():1-10. PubMed ID: 25589161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron Deficiency Induced by Chrysobactin in Saintpaulia Leaves Inoculated with Erwinia chrysanthemi.
    Neema C; Laulhere JP; Expert D
    Plant Physiol; 1993 Jul; 102(3):967-973. PubMed ID: 12231882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carrier-facilitated bulk liquid membrane transport of iron(III)-siderophore complexes utilizing first coordination sphere recognition.
    Wirgau JI; Crumbliss AL
    Inorg Chem; 2003 Sep; 42(18):5762-70. PubMed ID: 12950227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.