These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 18803396)

  • 21. Ligand-induced changes in estrogen receptor conformation as measured by site-directed spin labeling.
    Hurth KM; Nilges MJ; Carlson KE; Tamrazi A; Belford RL; Katzenellenbogen JA
    Biochemistry; 2004 Feb; 43(7):1891-907. PubMed ID: 14967030
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetically Encoded Spin Labels for In Vitro and In-Cell EPR Studies of Native Proteins.
    Schmidt MJ; Fedoseev A; Summerer D; Drescher M
    Methods Enzymol; 2015; 563():483-502. PubMed ID: 26478496
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tracking protein domain movements by EPR distance determination and multilateration.
    Stehle J; Drescher M
    Methods Enzymol; 2022; 666():121-144. PubMed ID: 35465918
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A versatile approach for site-directed spin labeling and structural EPR studies of RNAs.
    Babaylova ES; Ivanov AV; Malygin AA; Vorobjeva MA; Venyaminova AG; Polienko YF; Kirilyuk IA; Krumkacheva OA; Fedin MV; Karpova GG; Bagryanskaya EG
    Org Biomol Chem; 2014 May; 12(19):3129-36. PubMed ID: 24714823
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing the Local Secondary Structure of Human Vimentin with Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy.
    Liu L; Hess J; Sahu ID; FitzGerald PG; McCarrick RM; Lorigan GA
    J Phys Chem B; 2016 Dec; 120(48):12321-12326. PubMed ID: 27934222
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nestin promotes the phosphorylation-dependent disassembly of vimentin intermediate filaments during mitosis.
    Chou YH; Khuon S; Herrmann H; Goldman RD
    Mol Biol Cell; 2003 Apr; 14(4):1468-78. PubMed ID: 12686602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distance measurements by continuous wave EPR spectroscopy to monitor protein folding.
    Cooke JA; Brown LJ
    Methods Mol Biol; 2011; 752():73-96. PubMed ID: 21713632
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitroxide spin labels and EPR spectroscopy: A powerful association for protein dynamics studies.
    Torricella F; Pierro A; Mileo E; Belle V; Bonucci A
    Biochim Biophys Acta Proteins Proteom; 2021 Jul; 1869(7):140653. PubMed ID: 33757896
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of Site-Directed Spin Labeling EPR Spectroscopy to Study Protein-LPS Interactions.
    Schultz KM; Klug CS
    Methods Mol Biol; 2022; 2548():83-96. PubMed ID: 36151493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In-Cell EPR: Progress towards Structural Studies Inside Cells.
    Bonucci A; Ouari O; Guigliarelli B; Belle V; Mileo E
    Chembiochem; 2020 Feb; 21(4):451-460. PubMed ID: 31245902
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring Structure, Dynamics, and Topology of Nitroxide Spin-Labeled Proteins Using Continuous-Wave Electron Paramagnetic Resonance Spectroscopy.
    Altenbach C; López CJ; Hideg K; Hubbell WL
    Methods Enzymol; 2015; 564():59-100. PubMed ID: 26477248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nucleotide-dependent displacement and dynamics of the α-1 helix in kinesin revealed by site-directed spin labeling EPR.
    Yasuda S; Yanagi T; Yamada MD; Ueki S; Maruta S; Inoue A; Arata T
    Biochem Biophys Res Commun; 2014 Jan; 443(3):911-6. PubMed ID: 24361895
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Site-specific phosphorylation induces disassembly of vimentin filaments in vitro.
    Inagaki M; Nishi Y; Nishizawa K; Matsuyama M; Sato C
    Nature; 1987 Aug 13-19; 328(6131):649-52. PubMed ID: 3039376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-Pressure EPR and Site-Directed Spin Labeling for Mapping Molecular Flexibility in Proteins.
    Lerch MT; Yang Z; Altenbach C; Hubbell WL
    Methods Enzymol; 2015; 564():29-57. PubMed ID: 26477247
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enlarging the panoply of site-directed spin labeling electron paramagnetic resonance (SDSL-EPR): sensitive and selective spin-labeling of tyrosine using an isoindoline-based nitroxide.
    Mileo E; Etienne E; Martinho M; Lebrun R; Roubaud V; Tordo P; Gontero B; Guigliarelli B; Marque SR; Belle V
    Bioconjug Chem; 2013 Jun; 24(6):1110-7. PubMed ID: 23642211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ion-dependent mobility effects of the Fusobacterium nucleatum glycine riboswitch aptamer II via site-directed spin-labeling (SDSL) electron paramagnetic resonance (EPR).
    Ehrenberger MA; Vieyra A; Esquiaqui JM; Fanucci GE
    Biochem Biophys Res Commun; 2019 Aug; 516(3):839-844. PubMed ID: 31262445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Guidelines for the Simulations of Nitroxide X-Band cw EPR Spectra from Site-Directed Spin Labeling Experiments Using S
    Etienne E; Pierro A; Tamburrini KC; Bonucci A; Mileo E; Martinho M; Belle V
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36771013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments.
    Eriksson JE; He T; Trejo-Skalli AV; Härmälä-Braskén AS; Hellman J; Chou YH; Goldman RD
    J Cell Sci; 2004 Feb; 117(Pt 6):919-32. PubMed ID: 14762106
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dance with spins: site-directed spin labeling coupled to electron paramagnetic resonance spectroscopy directly inside cells.
    Pierro A; Drescher M
    Chem Commun (Camb); 2023 Jan; 59(10):1274-1284. PubMed ID: 36633152
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Site directed spin labeling to elucidating the mechanism of the cyanobacterial circadian clock.
    Chow GK; LiWang A; Britt RD
    Methods Enzymol; 2022; 666():59-78. PubMed ID: 35465929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.