BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 18803697)

  • 1. Characterization of asparagus lignin by HPLC.
    Jaramillo-Carmona S; Fuentes-Alventosa JM; Rodríguez-Gutiérrez G; Waldron KW; Smith AC; Guillén-Bejarano R; Fernández-Bolaños J; Jiménez-Araujo A; Rodríguez-Arcos R
    J Food Sci; 2008 Sep; 73(7):C526-32. PubMed ID: 18803697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence of naturally acetylated lignin units.
    Del Río JC; Marques G; Rencoret J; Martínez AT; Gutiérrez A
    J Agric Food Chem; 2007 Jul; 55(14):5461-8. PubMed ID: 17552541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of dietary fiber lignins from fruits and vegetables using the DFRC method.
    Bunzel M; Seiler A; Steinhart H
    J Agric Food Chem; 2005 Nov; 53(24):9553-9. PubMed ID: 16302776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of arylglycerol-beta-aryl ether linkages in enzymatic mild acidolysis lignins (EMAL): comparison of DFRC/(31)P NMR with thioacidolysis.
    Guerra A; Norambuena M; Freer J; Argyropoulos DS
    J Nat Prod; 2008 May; 71(5):836-41. PubMed ID: 18419155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A stable-isotope dilution GC-MS approach for the analysis of DFRC (derivatization followed by reductive cleavage) monomers from low-lignin plant materials.
    Schäfer J; Urbat F; Rund K; Bunzel M
    J Agric Food Chem; 2015 Mar; 63(10):2668-73. PubMed ID: 25727138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lignins and ferulate-coniferyl alcohol cross-coupling products in cereal grains.
    Bunzel M; Ralph J; Lu F; Hatfield RD; Steinhart H
    J Agric Food Chem; 2004 Oct; 52(21):6496-502. PubMed ID: 15479013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infrared reflectance-based prediction modeling.
    Robinson AR; Mansfield SD
    Plant J; 2009 May; 58(4):706-14. PubMed ID: 19175772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Cell Wall Components and Their Modifications during Postharvest Storage of Asparagus officinalis L.: Storage-Related Changes in Dietary Fiber Composition.
    Schäfer J; Wagner S; Trierweiler B; Bunzel M
    J Agric Food Chem; 2016 Jan; 64(2):478-86. PubMed ID: 26671648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying acetylated lignin units in non-wood fibers using pyrolysis-gas chromatography/mass spectrometry.
    del Río JC; Gutiérrez A; Martínez AT
    Rapid Commun Mass Spectrom; 2004; 18(11):1181-5. PubMed ID: 15164346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The DFRC Method for Lignin Analysis. 4. Lignin Dimers Isolated from DFRC-Degraded Loblolly Pine Wood.
    Peng J; Lu F; Ralph J
    J Agric Food Chem; 1998 Feb; 46(2):553-560. PubMed ID: 10554276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel tetrahydrofuran structures derived from beta-beta-coupling reactions involving sinapyl acetate in Kenaf lignins.
    Lu F; Ralph J
    Org Biomol Chem; 2008 Oct; 6(20):3681-94. PubMed ID: 18843398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In search of a maize ideotype for cell wall enzymatic degradability using histological and biochemical lignin characterization.
    Méchin V; Argillier O; Rocher F; Hébert Y; Mila I; Pollet B; Barriére Y; Lapierre C
    J Agric Food Chem; 2005 Jul; 53(15):5872-81. PubMed ID: 16028968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of lignin-rich residues remaining after continuous super-critical water hydrolysis of poplar wood (Populus albaglandulosa) for conversion to fermentable sugars.
    Moon SJ; Eom IY; Kim JY; Kim TS; Lee SM; Choi IG; Choi JW
    Bioresour Technol; 2011 May; 102(10):5912-6. PubMed ID: 21435868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of increased nitrogen supply on the lignification of poplar wood.
    Pitre FE; Pollet B; Lafarguette F; Cooke JE; MacKay JJ; Lapierre C
    J Agric Food Chem; 2007 Dec; 55(25):10306-14. PubMed ID: 17988087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward a better understanding of the lignin isolation process from wood.
    Guerra A; Filpponen I; Lucia LA; Saquing C; Baumberger S; Argyropoulos DS
    J Agric Food Chem; 2006 Aug; 54(16):5939-47. PubMed ID: 16881698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of flavonoid diglycosides in several genotypes of asparagus from the Huétor-Tájar population variety.
    Fuentes-Alventosa JM; Rodríguez G; Cermeño P; Jiménez A; Guillén R; Fernández-Bolaños J; Rodríguez-Arcos R
    J Agric Food Chem; 2007 Nov; 55(24):10028-35. PubMed ID: 17960889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of syringyl to guaiacyl ratio on the structure of natural and synthetic lignins.
    Kishimoto T; Chiba W; Saito K; Fukushima K; Uraki Y; Ubukata M
    J Agric Food Chem; 2010 Jan; 58(2):895-901. PubMed ID: 20041658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a rapid HPLC-UV method for simultaneous quantification of protodioscin and rutin in white and green asparagus spears.
    Lee EJ; Yoo KS; Patil BS
    J Food Sci; 2010; 75(9):C703-9. PubMed ID: 21535581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of storage on wall-bound phenolics in green asparagus.
    Rodriguez-Arcos RC; Smith AC; Waldron KW
    J Agric Food Chem; 2002 May; 50(11):3197-203. PubMed ID: 12009986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical and spatial differentiation of syringyl and guaiacyl lignins in poplar wood via time-of-flight secondary ion mass spectrometry.
    Zhou C; Li Q; Chiang VL; Lucia LA; Griffis DP
    Anal Chem; 2011 Sep; 83(18):7020-6. PubMed ID: 21851065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.