BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 188039)

  • 1. Distribution of 3':5'-cyclic AMP and 3':5'-cyclic GMP in rabbit retina in vivo: selective effects of dark and light adaptation and ischemia.
    Orr HT; Lowry OH; Cohen AI; Ferrendelli JA
    Proc Natl Acad Sci U S A; 1976 Dec; 73(12):4442-5. PubMed ID: 188039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnitude of increase in retinal cGMP metabolic flux determined by 18O incorporation into nucleotide alpha-phosphoryls corresponds with intensity of photic stimulation.
    Goldberg ND; Ames AA; Gander JE; Walseth TF
    J Biol Chem; 1983 Aug; 258(15):9213-9. PubMed ID: 6307996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of diamide on cyclic nucleotide levels in rat retina.
    Winkler BS; Fletcher RT; Chader GJ
    Invest Ophthalmol Vis Sci; 1984 Apr; 25(4):461-3. PubMed ID: 6323342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Outer retinal anoxia during dark adaptation is not a general property of mammalian retinas.
    Yu DY; Cringle SJ
    Comp Biochem Physiol A Mol Integr Physiol; 2002 May; 132(1):47-52. PubMed ID: 12062190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A light-stimulated increase of cyclic GMP in squid photoreceptors.
    Saibil HR
    FEBS Lett; 1984 Mar; 168(2):213-6. PubMed ID: 6327365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dysfunctional light-evoked regulation of cAMP in photoreceptors and abnormal retinal adaptation in mice lacking dopamine D4 receptors.
    Nir I; Harrison JM; Haque R; Low MJ; Grandy DK; Rubinstein M; Iuvone PM
    J Neurosci; 2002 Mar; 22(6):2063-73. PubMed ID: 11896146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bright environmental light accelerates rhodopsin depletion in retinoid-deprived rats.
    Katz ML; Stientjes HJ; Gao CL; Norberg M
    Invest Ophthalmol Vis Sci; 1993 May; 34(6):2000-8. PubMed ID: 8491550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light and choroidal PO2 modulation of intraretinal oxygen levels in an avascular retina.
    Cringle SJ; Yu DY; Alder V; Su EN
    Invest Ophthalmol Vis Sci; 1999 Sep; 40(10):2307-13. PubMed ID: 10476797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal cAMP levels during the progression of retinal degeneration in rhodopsin P23H and S334ter transgenic rats.
    Traverso V; Bush RA; Sieving PA; Deretic D
    Invest Ophthalmol Vis Sci; 2002 May; 43(5):1655-61. PubMed ID: 11980887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial and temporal expression of AP-1 responsive rod photoreceptor genes and bZIP transcription factors during development of the rat retina.
    He L; Campbell ML; Srivastava D; Blocker YS; Harris JR; Swaroop A; Fox DA
    Mol Vis; 1998 Dec; 4():32. PubMed ID: 9873070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variations in cyclic adenosine 3',5'-monophosphate and cyclic guanosine 3',5'-monophosphate content and efflux from the photosensitive pineal organ of the pike in culture.
    Falcón J; Gaildrat P
    Pflugers Arch; 1997 Jan; 433(3):336-42. PubMed ID: 9064650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen consumption in the inner and outer retina of the cat.
    Braun RD; Linsenmeier RA; Goldstick TK
    Invest Ophthalmol Vis Sci; 1995 Mar; 36(3):542-54. PubMed ID: 7890485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic nucleotide regulation of teleost rod photoreceptor inner segment length.
    Liepe BA; Burnside B
    J Gen Physiol; 1993 Jul; 102(1):75-98. PubMed ID: 7690838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Some cytological and initial biochemical observations on photoreceptors in retinas of rds mice.
    Cohen AI
    Invest Ophthalmol Vis Sci; 1983 Jul; 24(7):832-43. PubMed ID: 6862791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of cAMP by light and dopamine receptors is dysfunctional in photoreceptors of dystrophic retinal degeneration slow(rds) mice.
    Nir I; Haque R; Iuvone PM
    Exp Eye Res; 2001 Aug; 73(2):265-72. PubMed ID: 11446777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization and roles of cyclic nucleotide systems in retina.
    Ferrendelli JA; De Vries GW; Cohen AI; Lowry OH
    Neurochem Int; 1980; 1C():311-26. PubMed ID: 20487744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen consumption in the rat outer and inner retina: light- and pharmacologically-induced inhibition.
    Medrano CJ; Fox DA
    Exp Eye Res; 1995 Sep; 61(3):273-84. PubMed ID: 7556491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of photoreceptor cell compartments in mouse retina for protein analysis.
    Rose K; Walston ST; Chen J
    Mol Neurodegener; 2017 Apr; 12(1):28. PubMed ID: 28399904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastructure and organisation of the retina and pigment epithelium in the cutlips minnow, Exoglossum maxillingua (Cyprinidae, Teleostei).
    Collin SP; Collin HB; Ali MA
    Histol Histopathol; 1996 Jan; 11(1):55-69. PubMed ID: 8720448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease.
    Yu DY; Cringle SJ
    Prog Retin Eye Res; 2001 Mar; 20(2):175-208. PubMed ID: 11173251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.